Skip to content
Snippets Groups Projects
title: Avs
layout: article
tableColumns:
    article:
      doi: 10.1126/science.aba0372
      abstract: |
        Bacteria and archaea are frequently attacked by viruses and other mobile genetic elements and rely on dedicated antiviral defense systems, such as restriction endonucleases and CRISPR, to survive. The enormous diversity of viruses suggests that more types of defense systems exist than are currently known. By systematic defense gene prediction and heterologous reconstitution, here we discover 29 widespread antiviral gene cassettes, collectively present in 32% of all sequenced bacterial and archaeal genomes, that mediate protection against specific bacteriophages. These systems incorporate enzymatic activities not previously implicated in antiviral defense, including RNA editing and retron satellite DNA synthesis. In addition, we computationally predict a diverse set of other putative defense genes that remain to be characterized. These results highlight an immense array of molecular functions that microbes use against viruses.
    Sensor: Sensing of phage protein
    Activator: Direct binding
    Effector: Diverse effectors (Nucleic acid degrading, putative Nucleotide modifying, putative Membrane disrupting)

    PFAM: PF00753, PF13289, PF13365
contributors: 
    - Alex Linyi Gao
    - Nathalie Bechon
relevantAbstracts:
    - doi: 10.1126/science.aba0372
    - doi: 10.1126/science.abm4096

Avs

Description

Avs proteins are members of the STAND (signal transduction ATPase with numerous domains) superfamily of P-loop NTPases, which play essential roles in innate immunity and programmed cell death in eukaryotes :ref{doi=10.1038/sj.cdd.4400991,10.1016/j.jmb.2004.08.023}. STAND ATPases include nucleotide-binding oligomerization domain-like receptors (NLRs) in animal inflammasomes and plant resistosomes. Bacterial Avs share a common tripartite domain architecture with eukaryotic NLR, typically consisting of a central ATPase, a C-terminal sensor with superstructure-forming repeats, and an N-terminal effector involved in inflammation or cell death. They are very similar to other bacterial defense systems: bNACHT, CARD_NLR , Rst_TIR-NLR.

Molecular mechanism

::info Two classifications of Avs systems were proposed. The first one :ref{doi=10.1126/science.aba0372} distinguishes 5 types of Avs based on their effector domain. This is the classification used in Defense Finder right now, and in the following wiki entry unless stated otherwise. Considering the modular aspect of the effector domain, a new classification based on the homology of the NTPase and C terminal sensor domain, and not on the effector domain, has been proposed more recently :ref{doi=10.1126/science.abm4096} and is the one used in this description of the mechanism. This second classification defines 4 different types, that do not represent the whole diversity of Avs proteins but only the 4 characterized types. ::

Similar to their eukaryotic counterparts, Avs proteins utilize their C-terminal sensor domains to bind to pathogen-associated molecular patterns (PAMPs). Specifically, Avs1, Avs2, and Avs3 bind to monomers of the large terminase subunit of tailed phages, which account for approximately 96% of all phages, whereas Avs4 binds to monomers of the portal protein. The helical sensor domains of Avs1-4 can recognize diverse variants of terminase or portal proteins, with less than 5% sequence identity in some cases. Binding is mediated by shape complementarity across an extended interface, indicating fold recognition. Additionally, Avs3 directly recognizes active site residues and the ATP ligand of the large terminase.

Upon binding to their cognate phage protein, Avs1-4 assemble into tetramers that activate their N-terminal effector domains, which are often non-specific dsDNA endonucleases. The effector domains are thought to induce abortive infection to disrupt the production of progeny phage.

Avs systems sometimes include additional essential small genes on top of the canonical Avs gene, but the way they contribute to defense is not currently described.

Example of genomic structure

The Avs system has been described in a total of 5 subsystems (in the old classification).

Here are some examples found in the RefSeq database:

avs_i

The Avs_I system in Priestia aryabhattai (GCF_022811825.1, NZ_CP064098) is composed of 3 proteins Avs1C (WP_243495694.1) Avs1B (WP_243495695.1) Avs1A (WP_243495696.1)

avs_ii

The Avs_II system in Haloferax volcanii (GCF_000025685.1, NC_013967) is composed of 1 protein: Avs2A (WP_013035348.1)

avs_iii

The Avs_III system in Chryseobacterium indologenes (GCF_002208925.2, NZ_CP022058) is composed of 2 proteins Avs3B (WP_002978689.1) Avs3A (WP_088583894.1)

avs_iv

The Avs_IV system in Dysosmobacter welbionis (GCF_005121165.3, NZ_CP034413) is composed of 1 protein: Avs4A (WP_136890703.1)

avs_v

The Avs_V system in Klebsiella variicola (GCF_015287155.1, NZ_CP063912) is composed of 1 protein: Avs5A (WP_131026359.1)

Distribution of the system among prokaryotes

Among the 22,803 complete genomes of RefSeq, the Avs is detected in 978 genomes (4.29 %).

The system was detected in 366 different species.

avs

Proportion of genome encoding the Avs system for the 14 phyla with more than 50 genomes in the RefSeq database.

::article-system-distribution-plot ::

Structure

AVAST_I

Example 1

::molstar-pdbe-plugin

height: 700 dataUrls:

  • /avs/AVAST_I.AVAST_I__Avs1A.0.V.cif
  • /avs/AVAST_I.AVAST_I__Avs1C.0.V.cif
  • /avs/AVAST_I.AVAST_I__Avs1B.0.V.cif

::

AVAST_II

Example 1

::molstar-pdbe-plugin

height: 700 dataUrls:

  • /avs/AVAST_II__Avs2A.cif

::

AVAST_III

Example 1

::molstar-pdbe-plugin

height: 700 dataUrls:

  • /avs/AVAST_III.AVAST_III__Avs3B.0.V.cif
  • /avs/AVAST_III.AVAST_III__Avs3A.0.V.cif

::

AVAST_IV

Example 1

::molstar-pdbe-plugin

height: 700 dataUrls:

  • /avs/AVAST_IV__Avs4A.cif

::

AVAST_V

Example 1

::molstar-pdbe-plugin

height: 700 dataUrls:

  • /avs/AVAST_V__Avs5A.cif

::

Experimental validation

graph LR; Fillol-Salom_2022[Fillol-Salom et al., 2022] --> Origin_0 Origin_0[ SIR2-STAND Escherichia fergusonii's PICI EfCIRHB19-C05 QML19490.1] --> Expressed_0[Escherichia coli] Expressed_0[Escherichia coli] ----> T4 & Lambda & HK97 & HK544 & HK578 & T7 Fillol-Salom_2022[Fillol-Salom et al., 2022] --> Origin_0 Origin_0[ SIR2-STAND Escherichia fergusonii's PICI EfCIRHB19-C05 QML19490.1] --> Expressed_1[Salmonella enterica] Expressed_1 ----> P22 & BTP1 & ES18 & det7 Fillol-Salom_2022[Fillol-Salom et al., 2022] --> Origin_0 Origin_0[ SIR2-STAND Escherichia fergusonii's PICI EfCIRHB19-C05 QML19490.1] --> Expressed_2[Klebsiella pneumoniae] Expressed_2[Klebsiella pneumoniae] ----> Pokey Gao_2020[Gao et al., 2020] --> Origin_1 Origin_1[ Metallo beta-lactamase + protease + STAND type 1 Erwinia piriflorinigrans WP_023654314.1, WP_084007836.1, WP_023654316.1] --> Expressed_3[Escherichia coli] Expressed_3[Escherichia coli] ----> P1 Gao_2020[Gao et al., 2020] --> Origin_2 Origin_2[ STAND type 2 Escherichia coli WP_063118745.1] --> Expressed_4[Escherichia coli] Expressed_4[Escherichia coli] ----> T4 & P1 Gao_2022[Gao et al., 2022] --> Origin_2 Origin_2[ EcAvs2 Escherichia coli WP_063118745.1] --> Expressed_4[Escherichia coli] Expressed_4[Escherichia coli] ----> T7 & PhiV-1 & P1 & T4 & T5 & ZL-19 Gao_2020[Gao et al., 2020] --> Origin_3 Origin_3[ DUF4297-STAND type 3 Salmonella enterica WP_126523998.1, WP_126523997.1] --> Expressed_5[Escherichia coli] Expressed_5[Escherichia coli] ----> T2 & T3 & T7 & PhiV-1 Gao_2020[Gao et al., 2020] --> Origin_4 Origin_4[ Mrr-STAND type 4 Escherichia coli WP_044068927.1] --> Expressed_6[Escherichia coli] Expressed_6[Escherichia coli] ----> T3 & T7 & PhiV-1 Gao_2022[Gao et al., 2022] --> Origin_4 Origin_4[ EcAvs4 Escherichia coli WP_044068927.1] --> Expressed_6[Escherichia coli] Expressed_6[Escherichia coli] ----> T7 & PhiV-1 & ZL-19 Gao_2020[Gao et al., 2020] --> Origin_5 Origin_5[ SIR2-STAND type 5 Escherichia coli WP_001515187.1] --> Expressed_7[Escherichia coli] Expressed_7[Escherichia coli] ----> T2 Gao_2022[Gao et al., 2022] --> Origin_6 Origin_6[ SeAvs1 Salmonella enterica ECC9552481.1] --> Expressed_8[Escherichia coli] Expressed_8[Escherichia coli] ----> P1 & ZL-19 Gao_2022[Gao et al., 2022] --> Origin_7 Origin_7[ EcAvs1 Escherichia coli WP_060615938.1] --> Expressed_9[Escherichia coli] Expressed_9[Escherichia coli] ----> ZL-19 Gao_2022[Gao et al., 2022] --> Origin_8 Origin_8[ EpAvs1 Erwinia piriflorinigrans WP_048696970.1] --> Expressed_10[Escherichia coli] Expressed_10[Escherichia coli] ----> P1 & Lambda & ZL-19 Gao_2022[Gao et al., 2022] --> Origin_9 Origin_9[ SeAvs3 Salmonella enterica WP_126523998.1] --> Expressed_11[Escherichia coli] Expressed_11[Escherichia coli] ----> T7 & PhiV-1 & ZL-19 Gao_2022[Gao et al., 2022] --> Origin_10 Origin_10[ KvAvs3 Klebsiella variicola WP_139964370.1] --> Expressed_12[Escherichia coli] Expressed_12[Escherichia coli] ----> P1 & ZL-19 Gao_2022[Gao et al., 2022] --> Origin_11 Origin_11[ Ec2Avs2 Escherichia coli WP_001017806.1] --> Expressed_13[Escherichia coli] Expressed_13[Escherichia coli] ----> P1 Gao_2022[Gao et al., 2022] --> Origin_12 Origin_12[ Ec2Avs4 Escherichia coli EEW5978513.1] --> Expressed_14[Escherichia coli] Expressed_14[Escherichia coli] ----> T7 & PhiV-1 & ZL-19 Gao_2022[Gao et al., 2022] --> Origin_13 Origin_13[ KpAvs4 Klebsiella pneumoniae WP_087775949.1] --> Expressed_15[Escherichia coli] Expressed_15[Escherichia coli] ----> ZL-19 Gao_2022[Gao et al., 2022] --> Origin_14 Origin_14[ CcAvs4 Corallococcus coralloides WP_083892326.1] --> Expressed_16[Escherichia coli] Expressed_16[Escherichia coli] ----> T7 subgraph Title1[Reference] Fillol-Salom_2022 Gao_2020 Gao_2022 end subgraph Title2[System origin] Origin_0 Origin_0 Origin_0 Origin_1 Origin_2 Origin_2 Origin_3 Origin_4 Origin_4 Origin_5 Origin_6 Origin_7 Origin_8 Origin_9 Origin_10 Origin_11 Origin_12 Origin_13 Origin_14 end subgraph Title3[Expression species] Expressed_0 Expressed_1 Expressed_2 Expressed_3 Expressed_4 Expressed_4 Expressed_5 Expressed_6 Expressed_6 Expressed_7 Expressed_8 Expressed_9 Expressed_10 Expressed_11 Expressed_12 Expressed_13 Expressed_14 Expressed_15 Expressed_16 end subgraph Title4[Protects against] T4 Lambda HK97 HK544 HK578 T7 P22 BTP1 ES18 det7 Pokey P1 T4 P1 T7 PhiV-1 P1 T4 T5 ZL-19 T2 T3 T7 PhiV-1 T3 T7 PhiV-1 T7 PhiV-1 ZL-19 T2 P1 ZL-19 ZL-19 P1 Lambda ZL-19 T7 PhiV-1 ZL-19 P1 ZL-19 P1 T7 PhiV-1 ZL-19 ZL-19 T7 end style Title1 fill:none,stroke:none,stroke-width:none style Title2 fill:none,stroke:none,stroke-width:none style Title3 fill:none,stroke:none,stroke-width:none style Title4 fill:none,stroke:none,stroke-width:none