Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
J
jass_preprocessing
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Statistical-Genetics
jass_preprocessing
Commits
43dba7f5
Commit
43dba7f5
authored
2 years ago
by
Hanna JULIENNE
Browse files
Options
Downloads
Patches
Plain Diff
modified filtering of sample size
parent
46ff85c7
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
jass_preprocessing/__main__.py
+5
-10
5 additions, 10 deletions
jass_preprocessing/__main__.py
jass_preprocessing/compute_score.py
+21
-5
21 additions, 5 deletions
jass_preprocessing/compute_score.py
jass_preprocessing/map_gwas.py
+0
-3
0 additions, 3 deletions
jass_preprocessing/map_gwas.py
with
26 additions
and
18 deletions
jass_preprocessing/__main__.py
+
5
−
10
View file @
43dba7f5
...
@@ -45,12 +45,11 @@ def launch_preprocessing(args):
...
@@ -45,12 +45,11 @@ def launch_preprocessing(args):
print
(
'
processing GWAS: {}
'
.
format
(
tag
))
print
(
'
processing GWAS: {}
'
.
format
(
tag
))
start
=
time
.
time
()
start
=
time
.
time
()
print
(
args
.
input_folder
)
GWAS_link
=
jp
.
map_gwas
.
walkfs
(
args
.
input_folder
,
gwas_filename
)[
2
]
GWAS_link
=
jp
.
map_gwas
.
walkfs
(
args
.
input_folder
,
gwas_filename
)[
2
]
print
(
GWAS_link
)
mapgw
=
jp
.
map_gwas
.
map_columns_position
(
GWAS_link
,
gwas_map
.
loc
[
tag
])
mapgw
=
jp
.
map_gwas
.
map_columns_position
(
GWAS_link
,
gwas_map
.
loc
[
tag
])
print
(
mapgw
)
print
(
args
.
imputation_quality_treshold
)
if
args
.
imputation_quality_treshold
is
not
'
None
'
:
if
args
.
imputation_quality_treshold
is
not
'
None
'
:
gw_df
=
jp
.
map_gwas
.
read_gwas
(
GWAS_link
,
mapgw
,
imputation_treshold
=
eval
(
args
.
imputation_quality_treshold
))
gw_df
=
jp
.
map_gwas
.
read_gwas
(
GWAS_link
,
mapgw
,
imputation_treshold
=
eval
(
args
.
imputation_quality_treshold
))
...
@@ -58,19 +57,15 @@ def launch_preprocessing(args):
...
@@ -58,19 +57,15 @@ def launch_preprocessing(args):
gw_df
=
jp
.
map_gwas
.
read_gwas
(
GWAS_link
,
mapgw
)
gw_df
=
jp
.
map_gwas
.
read_gwas
(
GWAS_link
,
mapgw
)
ref
=
jp
.
map_reference
.
read_reference
(
args
.
ref_path
,
bool
(
args
.
mask_MHC
),
float
(
args
.
minimum_MAF
),
region_to_mask
=
eval
(
args
.
additional_masked_region
))
ref
=
jp
.
map_reference
.
read_reference
(
args
.
ref_path
,
bool
(
args
.
mask_MHC
),
float
(
args
.
minimum_MAF
),
region_to_mask
=
eval
(
args
.
additional_masked_region
))
print
(
ref
.
shape
)
print
(
ref
.
head
())
print
(
gw_df
.
shape
)
print
(
gw_df
.
head
())
mgwas
=
jp
.
map_reference
.
map_on_ref_panel
(
gw_df
,
ref
,
gwas_map
.
loc
[
tag
,
"
index_type
"
])
mgwas
=
jp
.
map_reference
.
map_on_ref_panel
(
gw_df
,
ref
,
gwas_map
.
loc
[
tag
,
"
index_type
"
])
print
(
mgwas
.
shape
)
mgwas
=
jp
.
map_reference
.
compute_snp_alignement
(
mgwas
)
mgwas
=
jp
.
map_reference
.
compute_snp_alignement
(
mgwas
)
mgwas
=
jp
.
compute_score
.
compute_z_score
(
mgwas
)
mgwas
=
jp
.
compute_score
.
compute_z_score
(
mgwas
)
mgwas
=
jp
.
compute_score
.
compute_sample_size
(
mgwas
,
args
.
diagnostic_folder
,
tag
,
args
.
percent_sample_size
)
mgwas
=
jp
.
compute_score
.
compute_sample_size
(
mgwas
,
args
.
diagnostic_folder
,
tag
,
args
.
percent_sample_size
)
end
=
time
.
time
()
end
=
time
.
time
()
print
(
"
Preprocessing of {0} in {1}s
"
.
format
(
tag
,
end
-
start
))
print
(
"
Preprocessing of {0} in {1}s
"
.
format
(
tag
,
end
-
start
))
print
(
mgwas
.
head
())
jp
.
save_output
.
save_output_by_chromosome
(
mgwas
,
args
.
output_folder
,
tag
)
jp
.
save_output
.
save_output_by_chromosome
(
mgwas
,
args
.
output_folder
,
tag
)
if
(
args
.
output_folder_1_file
):
if
(
args
.
output_folder_1_file
):
...
...
This diff is collapsed.
Click to expand it.
jass_preprocessing/compute_score.py
+
21
−
5
View file @
43dba7f5
...
@@ -27,7 +27,7 @@ def compute_z_score(mgwas):
...
@@ -27,7 +27,7 @@ def compute_z_score(mgwas):
return
mgwas
return
mgwas
def
compute_sample_size
(
mgwas
,
diagnostic_folder
,
trait
,
perSS
=
0.
7
):
def
compute_sample_size
(
mgwas
,
diagnostic_folder
,
trait
,
max_sample_size_ratio
=
0.
1
):
if
'
n
'
in
mgwas
.
columns
:
if
'
n
'
in
mgwas
.
columns
:
myN
=
mgwas
.
n
myN
=
mgwas
.
n
...
@@ -45,22 +45,38 @@ def compute_sample_size(mgwas, diagnostic_folder, trait, perSS = 0.7):
...
@@ -45,22 +45,38 @@ def compute_sample_size(mgwas, diagnostic_folder, trait, perSS = 0.7):
else
:
else
:
raise
ValueError
(
raise
ValueError
(
'
Both Sample size and SE(beta) are missing: sample size filtering cannot be applied
'
)
'
Both Sample size and SE(beta) are missing: sample size filtering cannot be applied
'
)
# replace infinite value by the max finite one
# replace infinite value by the max finite one
if
(
np
.
isinf
(
myN
).
any
()):
if
(
np
.
isinf
(
myN
).
any
()):
myN
[
np
.
isinf
(
myN
)]
=
np
.
max
(
myN
[
np
.
isfinite
(
myN
)])
myN
[
np
.
isinf
(
myN
)]
=
np
.
max
(
myN
[
np
.
isfinite
(
myN
)])
warnings
.
warn
(
"
Some snp had an infinite sample size
"
)
warnings
.
warn
(
"
Some snp had an infinite sample size
"
)
myW_thres
=
np
.
percentile
(
myN
.
dropna
(),
90
)
ss_thres
=
float
(
perSS
)
*
myW_thres
perc_low
=
0
perc_max
=
100
myW_thres_low
=
np
.
percentile
(
myN
.
dropna
(),
perc_low
)
myW_thres_max
=
np
.
percentile
(
myN
.
dropna
(),
perc_max
)
while
(
1
-
(
myW_thres_low
/
myW_thres_max
))
>
max_sample_size_ratio
:
# narrow treshold until sample size can be considered as homogeneous
perc_low
+=
10
perc_max
-=
10
myW_thres_low
=
np
.
percentile
(
myN
.
dropna
(),
perc_low
)
myW_thres_max
=
np
.
percentile
(
myN
.
dropna
(),
perc_max
)
mgwas
[
"
computed_N
"
]
=
myN
mgwas
[
"
computed_N
"
]
=
myN
plt
.
clf
()
plt
.
clf
()
p1
=
sns
.
distplot
(
mgwas
.
computed_N
[
~
mgwas
.
computed_N
.
isna
()])
p1
=
sns
.
distplot
(
mgwas
.
computed_N
[
~
mgwas
.
computed_N
.
isna
()])
p1
.
axvline
(
x
=
ss_thres
)
p1
.
axvline
(
x
=
myW_thres_low
,
color
=
'
r
'
)
p1
.
axvline
(
x
=
myW_thres_max
,
color
=
"
r
"
)
fo
=
"
{0}/Sample_size_distribution_{1}.png
"
.
format
(
diagnostic_folder
,
trait
)
fo
=
"
{0}/Sample_size_distribution_{1}.png
"
.
format
(
diagnostic_folder
,
trait
)
p1
.
figure
.
savefig
(
fo
)
p1
.
figure
.
savefig
(
fo
)
# Filter SNP with a too small sample _SampleSize
# Filter SNP with a too small sample _SampleSize
print
(
"
NSNP before sample size filtering: {}
"
.
format
(
mgwas
.
shape
[
0
]))
print
(
"
NSNP before sample size filtering: {}
"
.
format
(
mgwas
.
shape
[
0
]))
mgwas
=
mgwas
.
loc
[(
myN
>=
ss_thres
)]
mgwas
=
mgwas
.
loc
[(
myN
>=
myW_thres_low
)
&
(
myN
<=
myW_thres_max
)]
mgwas
=
mgwas
.
loc
[
~
mgwas
.
computed_N
.
isna
()]
mgwas
=
mgwas
.
loc
[
~
mgwas
.
computed_N
.
isna
()]
print
(
"
NSNP after sample size filtering: {}
"
.
format
(
mgwas
.
shape
[
0
]))
print
(
"
NSNP after sample size filtering: {}
"
.
format
(
mgwas
.
shape
[
0
]))
...
...
This diff is collapsed.
Click to expand it.
jass_preprocessing/map_gwas.py
+
0
−
3
View file @
43dba7f5
...
@@ -141,8 +141,6 @@ def read_gwas( gwas_internal_link, column_map, imputation_treshold=None):
...
@@ -141,8 +141,6 @@ def read_gwas( gwas_internal_link, column_map, imputation_treshold=None):
else
:
else
:
compression
=
None
compression
=
None
print
(
column_map
.
values
)
print
(
column_map
.
index
)
fullGWAS
=
pd
.
read_csv
(
gwas_internal_link
,
delim_whitespace
=
True
,
fullGWAS
=
pd
.
read_csv
(
gwas_internal_link
,
delim_whitespace
=
True
,
usecols
=
column_map
.
values
,
usecols
=
column_map
.
values
,
compression
=
compression
,
compression
=
compression
,
...
@@ -152,7 +150,6 @@ def read_gwas( gwas_internal_link, column_map, imputation_treshold=None):
...
@@ -152,7 +150,6 @@ def read_gwas( gwas_internal_link, column_map, imputation_treshold=None):
'
-NaN
'
,
'
-nan
'
,
'
1.#IND
'
,
'
1.#QNAN
'
,
'
N/A
'
,
'
-NaN
'
,
'
-nan
'
,
'
1.#IND
'
,
'
1.#QNAN
'
,
'
N/A
'
,
'
NA
'
,
'
NULL
'
,
'
NaN
'
,
'
NA
'
,
'
NULL
'
,
'
NaN
'
,
'
nan
'
,
'
na
'
,
'
.
'
,
'
-
'
],
dtype
=
{
"
snpid
"
:
str
,
"
a1
"
:
str
,
"
a2
"
:
str
,
"
freq
"
:
float
,
"
z
"
:
float
,
"
se
"
:
float
,
"
pval
"
:
float
})
'
nan
'
,
'
na
'
,
'
.
'
,
'
-
'
],
dtype
=
{
"
snpid
"
:
str
,
"
a1
"
:
str
,
"
a2
"
:
str
,
"
freq
"
:
float
,
"
z
"
:
float
,
"
se
"
:
float
,
"
pval
"
:
float
})
print
(
fullGWAS
.
head
())
#Ensure that allele are written in upper cases:
#Ensure that allele are written in upper cases:
fullGWAS
.
a1
=
fullGWAS
.
a1
.
str
.
upper
()
fullGWAS
.
a1
=
fullGWAS
.
a1
.
str
.
upper
()
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment