Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
multitrait_power_traitselection
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Statistical-Genetics
multitrait_power_traitselection
Commits
f4ae9d9b
Commit
f4ae9d9b
authored
1 year ago
by
Yuka SUZUKI
Browse files
Options
Downloads
Patches
Plain Diff
add Figure for SUP note 4 (simulation)
parent
f50befaf
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Figures_manuscript/scripts/Fig_SUPnote4_simulation_test_boundaries.R
+171
-0
171 additions, 0 deletions
...uscript/scripts/Fig_SUPnote4_simulation_test_boundaries.R
with
171 additions
and
0 deletions
Figures_manuscript/scripts/Fig_SUPnote4_simulation_test_boundaries.R
0 → 100644
+
171
−
0
View file @
f4ae9d9b
library
(
MASS
)
library
(
ggplot2
)
library
(
data.table
)
h1
=
0.4
h2
=
0.4
M
=
1000
pgm
=
0.4
*
min
(
h1
,
h1
)
# unused
pgh
=
0.5
*
min
(
h1
,
h2
)
epsgh
=
matrix
(
c
(
h1
,
pgh
,
pgh
,
h2
),
ncol
=
2
)
/
M
epsgoh
=
matrix
(
c
(
h1
,
-
pgh
,
-
pgh
,
h2
),
ncol
=
2
)
/
M
# heritable trait but not correlated
epsh
=
matrix
(
c
(
h1
,
0
,
0
,
h2
),
ncol
=
2
)
/
M
epshlow
=
matrix
(
c
(
0.1
,
0
,
0
,
0.1
),
ncol
=
2
)
/
M
epsg1
=
matrix
(
c
(
h1
,
pgh
,
pgh
,
h2
),
ncol
=
2
)
/
M
epsg2
=
matrix
(
c
(
h1
,
-0.2
,
-0.2
,
h2
),
ncol
=
2
)
/
M
# draw genetic effect according to several scenarios
BG_mat
<-
list
()
#set.seed(1234)
#BG_mat <- append(BG_mat, list("G_cov_low_het_null_Gcor" = data.frame(mvrnorm(M, c(0,0),epshlow)))) # genetic effects with zero genetic correlation between traits (with low heritability)
set.seed
(
1234
)
BG_mat
<-
append
(
BG_mat
,
list
(
"G_cov_high"
=
data.frame
(
mvrnorm
(
M
,
c
(
0
,
0
),
epsgh
))))
# genetic effects with a given positive genetic covariance
#set.seed(1234)
#BG_mat <- append(BG_mat, list("G_cov_heritable_null_Gcor" = data.frame(mvrnorm(M, c(0,0),epsh)))) # genetic effects with zero genetic correlation between traits
#set.seed(1234)
#BG_mat <- append(BG_mat, list("G_cov_opp_high"= data.frame(mvrnorm(M, c(0,0),epsgoh)))) # genetic effects with a given negative genetic covariance
#set.seed(1234)
#BG_mat <- append(BG_mat, list("G_bicov" = data.frame(rbind(mvrnorm(M/2, c(0,0),epsg1), mvrnorm(M/2, c(0,0), epsg2))))) # genetic effects with a given mixed (local) genetic covariance
sumZ
<-
function
(
Z
,
w
){
return
((
as.matrix
(
Z
)
%*%
matrix
(
w
))
^
2
/
(
as.matrix
(
t
(
w
))
%*%
sigr
%*%
as.matrix
(
w
))[
1
,
1
])}
# unused
Univ
<-
function
(
Z
){
max
(
abs
(
Z
))}
hypothesis
=
"G_cov_high"
# unused
N
=
10000
# unused
overlap
=
0.5
# unused
sign_threshold
=
5
*
(
10
^
-8
)
#/M
C_env
=
seq
(
-0.9
,
0.9
,
len
=
5
)
# Control the environmental correlation.
Ns_frac
=
c
(
1
,
0
,
0.5
)
# Sample overlap
N_samp
=
c
(
50000
)
ce
=
0.9
# unused
for
(
hypothesis
in
names
(
BG_mat
)){
print
(
hypothesis
)
if
(
hypothesis
==
"null"
){
h1
=
0
h2
=
0
}
else
{
h1
=
0.4
h2
=
0.4
}
for
(
overlap
in
Ns_frac
){
simu
=
1
D_pval
=
data.frame
(
matrix
(
NA
,
nrow
=
length
(
N_samp
)
*
length
(
C_env
),
ncol
=
4
))
names
(
D_pval
)
=
c
(
"N_samp"
,
"env_cor"
,
"Omnibus"
,
"Univ"
)
for
(
ce
in
C_env
){
pe
=
ce
*
min
((
1
-
h1
),
(
1
-
h2
))
eps
=
matrix
(
c
(
1
-
h1
,
pe
,
pe
,
1
-
h2
),
ncol
=
2
)
# correlation in environmental and non-additive genetic effects between two traits
Beta
=
BG_mat
[[
hypothesis
]]
# Genetic effects for the two trait
print
(
ce
)
print
(
simu
)
for
(
N
in
N_samp
){
X1
=
matrix
(
0
,
nrow
=
N
,
ncol
=
M
)
X2
=
matrix
(
0
,
nrow
=
N
,
ncol
=
M
)
D_pval
[
simu
,
"N_samp"
]
=
N
D_pval
[
simu
,
"env_cor"
]
=
ce
# Draw SNPs :
MAF
=
runif
(
M
,
0.05
,
0.95
)
i
=
1
for
(
p
in
MAF
){
X1
[,
i
]
=
rbinom
(
N
,
2
,
p
)
X2
[,
i
]
=
rbinom
(
N
,
2
,
p
)
i
=
i
+1
}
NS
=
dim
(
X1
)[
1
]
*
overlap
X2
[
1
:
NS
,
]
=
X1
[
1
:
NS
,]
X1
=
scale
(
X1
)
X2
=
scale
(
X2
)
set.seed
(
4321
)
env1
=
mvrnorm
(
N
,
c
(
0
,
0
),
eps
)
env2
=
mvrnorm
(
N
,
c
(
0
,
0
),
eps
)
env2
[
1
:
NS
,
]
=
env1
[
1
:
NS
,]
Y1
=
as.matrix
(
X1
)
%*%
Beta
[,
1
]
+
env1
[,
1
]
Y2
=
as.matrix
(
X2
)
%*%
Beta
[,
2
]
+
env2
[,
2
]
rho_ov
=
cor
(
Y1
,
Y2
)
*
overlap
# cor(Y1,Y2)=rho (rho=pe+pg); overlap=NS/N (fraction of overlapping samples out of all samples)
D
=
data.frame
(
matrix
(
c
(
Y1
,
Y2
),
ncol
=
2
))
png
(
paste0
(
"/pasteur/zeus/projets/p02/GGS_JASS/5._ARTICLE_DISCOVERABILITY/Figures/outputs/simulations/Phenotype_"
,
hypothesis
,
"_ov_"
,
overlap
,
".png"
))
p
=
ggplot
(
D
,
aes
(
x
=
Y1
,
y
=
Y2
))
+
geom_point
()
print
(
p
)
dev.off
()
Beta_estimate1
=
t
((
t
(
Y1
)
%*%
X1
)
%*%
solve
(
t
(
X1
)
%*%
X1
,
tol
=
10
^
-25
))
Beta_estimate2
=
t
((
t
(
Y2
)
%*%
X2
)
%*%
solve
(
t
(
X2
)
%*%
X2
,
tol
=
10
^
-25
))
Beta_est
=
data.frame
(
B1
=
Beta_estimate1
,
B2
=
Beta_estimate2
)
png
(
paste0
(
"/pasteur/zeus/projets/p02/GGS_JASS/5._ARTICLE_DISCOVERABILITY/Figures/outputs/simulations/Beta_"
,
hypothesis
,
"_ov_"
,
overlap
,
".png"
))
print
(
ggplot
(
Beta_est
,
aes
(
x
=
B1
,
y
=
B2
))
+
geom_point
())
dev.off
()
Z
=
Beta_est
Z
[,
1
]
=
Beta_est
[,
1
]
*
sqrt
(
N
)
Z
[,
2
]
=
Beta_est
[,
2
]
*
sqrt
(
N
)
Z
=
as.data.frame
(
Z
)
names
(
Z
)
=
c
(
"z1"
,
"z2"
)
png
(
paste0
(
"/pasteur/zeus/projets/p02/GGS_JASS/5._ARTICLE_DISCOVERABILITY/Figures/outputs/simulations/Z_"
,
hypothesis
,
"_ov_"
,
overlap
,
".png"
))
print
(
ggplot
(
Z
,
aes
(
x
=
z1
,
y
=
z2
))
+
geom_point
(
alpha
=
0.5
,
size
=
1
,
color
=
"blue"
))
dev.off
()
#
sigr
=
matrix
(
c
(
1
,
0
,
0
,
1
),
nrow
=
2
,
ncol
=
2
)
sigr
[
1
,
2
]
=
rho_ov
sigr
[
2
,
1
]
=
rho_ov
sigr
# Omnibus
Omni_stat
=
diag
(
as.matrix
(
Z
[,
1
:
2
])
%*%
solve
(
sigr
)
%*%
as.matrix
(
t
(
Z
[,
1
:
2
])))
pval
=
1
-
pchisq
(
Omni_stat
,
df
=
2
)
D_pval
[
simu
,
"Omnibus"
]
=
mean
(
pval
<
sign_threshold
)
Z
[
"Omnibus"
]
=
pval
# Stat Univariate test
stat
=
apply
(
Z
[,
1
:
2
],
1
,
Univ
)
pval
=
1
-
pnorm
(
stat
)
D_pval
[
simu
,
"Univ"
]
=
mean
(
pval
<
sign_threshold
)
Z
[
"Univ"
]
=
pval
Z
[
"Significance status"
]
=
"None"
Z
[(
Z
$
Univ
<
sign_threshold
)
&
(
Z
$
Omnibus
<
sign_threshold
)
,
"Significance status"
]
=
"Both"
Z
[(
Z
$
Univ
<
sign_threshold
)
&
(
Z
$
Omnibus
>
sign_threshold
)
,
"Significance status"
]
=
"Univariate"
Z
[(
Z
$
Univ
>
sign_threshold
)
&
(
Z
$
Omnibus
<
sign_threshold
)
,
"Significance status"
]
=
"Omnibus"
range_z
<-
max
(
abs
(
Z
$
z1
),
abs
(
Z
$
z2
))
write.table
(
Z
,
paste0
(
"/pasteur/zeus/projets/p02/GGS_JASS/5._ARTICLE_DISCOVERABILITY/Figures/outputs/simulations/Z_scores_"
,
hypothesis
,
"_ov_"
,
overlap
,
"_N_"
,
N
,
"ce_"
,
ce
,
".csv"
),
sep
=
"\t"
,
row.names
=
TRUE
)
png
(
paste0
(
"/pasteur/zeus/projets/p02/GGS_JASS/5._ARTICLE_DISCOVERABILITY/Figures/outputs/simulations/"
,
hypothesis
,
"_ov_"
,
overlap
,
"_N_"
,
N
,
"ce_"
,
ce
,
".png"
),
width
=
1500
,
height
=
1500
,
res
=
300
)
p
=
ggplot
(
Z
,
id.var
=
c
(
"z1"
,
"z2"
),
aes
(
x
=
z1
,
y
=
z2
,
color
=
`Significance status`
))
+
geom_point
(
size
=
1.5
)
+
scale_colour_manual
(
values
=
c
(
"#3ba3ec"
,
"grey"
,
"#f77189"
,
"#50b131"
))
+
xlim
(
-
range_z
,
range_z
)
+
ylim
(
-
range_z
,
range_z
)
print
(
p
+
theme_minimal
()
+
theme
(
legend.position
=
"top"
,
panel.spacing
=
unit
(
1.5
,
"lines"
),
text
=
element_text
(
size
=
16
))
+
labs
(
color
=
"Significance Status"
))
dev.off
()
simu
=
simu
+1
}
}
write.table
(
D_pval
,
paste0
(
"/pasteur/zeus/projets/p02/GGS_JASS/5._ARTICLE_DISCOVERABILITY/Figures/outputs/simulations/"
,
hypothesis
,
"_ov_"
,
overlap
,
".csv"
),
sep
=
"\t"
,
row.names
=
TRUE
)
}
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment