Newer
Older
#!/usr/bin/env python
from collections import defaultdict
import os
from shutil import copyfile
import pandas as pd
from Bio import SeqIO
import os.path
SOFTWARES = {'meme','dreme','centrimo','meme_tomtom'}
##TYPES_SEARCHES = {'All','Narrow','Const','Max'}
def parse_all_logs(path_analysis, exp_design_name):
with open(path_analysis + 'Motif_search.log', 'w') as general_log:
header = 'Data_name\t' + '\t'.join(SOFTWARES)
general_log.write(header+'\n')
for data_name in os.listdir(path_analysis + 'results/'):
if not data_name.startswith('.') and not data_name.endswith('.log') \
and not data_name.endswith('.sh'): # and '_MaxMaxValues' in data_name:
progress_filename = path_analysis + 'results/' + data_name + '/progress_log.txt'
line = data_name + '\t'
for software in SOFTWARES:
found = False
with open(progress_filename,'r') as file:
for row in file:
status_soft = 'name: '+software+' status: 0'
if status_soft in row:
found = True
if found:
line += '1\t'
else:
line += '0\t'
general_log.write(line.strip() + '\n')
def parse_dreme(path_analysis, path_motif, exp_design_name):
with open(path_analysis + 'dreme.sh', 'w') as dreme_file:
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
for data_name in os.listdir(path_analysis + 'results/'):
#if exp_design_name in data_name:
print(data_name)
if not data_name.startswith('.') and not data_name.endswith('.log') \
and not data_name.endswith('.sh'): # and '_MaxMaxValues' in data_name:
# print(data_name)
dreme_xml = path_analysis + 'results/' + data_name + '/dreme_out/dreme.xml'
if os.path.exists(dreme_xml):
dreme_list = list()
with open(dreme_xml, 'r') as file:
for row in file:
dreme_list.append(row.strip())
if '<command_line>' in row:
dreme_file.write(row)
dreme_txt = path_analysis + 'results/' + data_name + '/dreme_out/dreme.txt'
dreme_txt_list = list()
with open(dreme_txt, 'r') as file:
for row in file:
dreme_txt_list.append(row.strip())
dreme_txt_intro = ''
write_intro = False
for row in dreme_txt_list:
if row.startswith('MOTIF '):
break
if 'MEME version' in row:
write_intro = True
if write_intro:
dreme_txt_intro += row + '\n'
#print(dreme_txt_intro)
# parse dreme
with open(path_motif + '/logs/Dreme_' + data_name + '.log', 'w') as general_log:
header = 'ID\tMotif\tNb_sites\tPos_Occurence\tNeg_Occurence\tNb_Seq\t' \
'Percent\tPos_Percent\tNeg_Percent\tEvalue'
general_log.write(header + '\n')
# search length fasta
for line in dreme_list:
if '<positives name=' in line:
number_seq = float(line.split(' ')[2].replace('\"','').replace('count=',''))
# search motifs
for i in range(1, len(dreme_list)):
line = dreme_list[i]
if '<motifs>' in line:
index_motifs = i
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# get motifs info
for k in range(index_motifs+1, len(dreme_list)):
if '<motif' in dreme_list[k]:
new_line = dreme_list[k].replace('\"','').split(' ')
#print(new_line)
id = new_line[1].replace('id=', '')
#print(id,data_name)
print(dreme_txt_intro)
seq = new_line[2].replace('seq=', '')
occ = float(new_line[4].replace('nsites=', ''))
pos_occ = float(new_line[5].replace('p=', ''))
neg_occ = float(new_line[6].replace('n=', ''))
evalue = new_line[8].replace('evalue=', '')
# save table
line_to_write = [id, seq, str(occ), str(pos_occ),str(neg_occ), str(number_seq),
str(occ/number_seq), str(pos_occ/number_seq), str(neg_occ/number_seq),
str(evalue)]
general_log.write('\t'.join(line_to_write) + '\n')
# copy png file
for imagefile in os.listdir(path_analysis + 'results/' + data_name + '/dreme_out/'):
if id in imagefile:
if 'nc_' in imagefile:
src = path_analysis + 'results/' + data_name + '/dreme_out/' + imagefile
dst = path_motif + '/motif_figure/'+seq + '_nc.png'
copyfile(src, dst)
else:
src = path_analysis + 'results/' + data_name + '/dreme_out/' + imagefile
dst = path_motif + '/motif_figure/' + seq + '_rc.png'
copyfile(src, dst)
# save motif
with open(path_motif + '/motif/' + seq + '.meme', 'w') as meme_file:
meme_file.write(dreme_txt_intro+'\n')
# find motif info
dreme_txt_motif = ''
write_motif = False
for row in dreme_txt_list:
if write_motif and row.startswith('MOTIF '):
break
if ('MOTIF '+seq+' DREME') in row:
write_motif = True
if write_motif:
dreme_txt_motif += row + '\n'
print(dreme_txt_motif)
meme_file.write(dreme_txt_motif + '\n')
def regroup_motifs(path_motif, exp_design_name, pvalue_cutoff):
motif_set = set()
dict_dataset = defaultdict(list)
dict_evalue = defaultdict(list)
#data_selection = 'NoabxGF.'
for data_name in os.listdir(path_motif + 'logs/'):
if data_name.startswith('Dreme_') and data_name.endswith('.log') and exp_design_name in data_name:
type_data = data_name.replace('Dreme_','').replace('.log','')
if 'Meth' in type_data:
#if data_selection in data_name:
print(type_data, data_name)
with open(path_motif + 'logs/' + data_name,'r') as log_file:
log_file.readline()
for line in log_file:
motif = line.split('\t')[1]
evalue = line.strip().split('\t')[-1]
if float(evalue) < pvalue_cutoff:
motif_set.add(motif)
print(evalue,motif)
dict_dataset[motif].append(type_data)
dict_evalue[motif].append(evalue)
else:
print(type_data, data_name)
with open(path_motif + 'logs/' + data_name, 'r') as log_file:
log_file.readline()
for line in log_file:
motif = line.split('\t')[1]
evalue = line.strip().split('\t')[-1]
if float(evalue) < pvalue_cutoff:
motif_set.add(motif)
print(evalue, motif)
dict_dataset[motif].append(type_data)
dict_evalue[motif].append(evalue)
with open(path_motif + 'Motif_'+exp_design_name+ '__raw.txt','w') as motif_log:
motif_log.write("Motif\tData\tP-value\n")
for motif in motif_set:
print(motif+'\t'+';'.join(dict_dataset[motif]))
print(motif+'\t'+';'.join(dict_dataset[motif])+'\t'+';'.join(dict_evalue[motif])+'\n')
motif_log.write(motif+'\t'+';'.join(dict_dataset[motif])+'\t'+';'.join(dict_evalue[motif])+'\n')
def regroup_motifs_diff(path_motif, exp_design_name, pvalue_cutoff):
'''
Regroup all motifs coming from comparisons of biological conditions
:param path_motif:
:param exp_design_name:
:param pvalue_cutoff:
:return:
'''
motif_set = set()
dict_dataset = defaultdict(list)
dict_evalue = defaultdict(list)
for data_name in os.listdir(path_motif + 'logs/'):
if data_name.startswith('Dreme_') and data_name.endswith('.log') and '_MaxMaxValues' not in data_name:
type_data = data_name.replace('Dreme_','').replace('.log','')
print(type_data, data_name)
with open(path_motif + 'logs/' + data_name,'r') as log_file:
log_file.readline()
for line in log_file:
motif = line.split('\t')[1]
evalue = line.strip().split('\t')[-1]
if float(evalue) < pvalue_cutoff:
motif_set.add(motif)
print(evalue,motif)
dict_dataset[motif].append(type_data)
dict_evalue[motif].append(evalue)
with open(path_motif + 'Motif_'+exp_design_name+'_raw.txt','w') as motif_log:
motif_log.write("Motif\tData\tP-value\n")
for motif in motif_set:
motif_log.write(motif+'\t'+';'.join(dict_dataset[motif])+'\t'+';'.join(dict_evalue[motif])+'\n')
def select_centrally_enriched_diff(path_analysis, path_motif, exp_design_name):
'''
Add a column indicating if motif are centrally enriched, and select only motif coming form a comparisons.
Meaning : exp_design_name not in D
:param path_analysis:
:param path_motif:
:param exp_design_name:
:return:
'''
centrimo_motif = dict()
for data_name in os.listdir(path_motif + 'logs/'):
if data_name.startswith('Dreme_') and data_name.endswith('.log') and exp_design_name in data_name:
type_data = data_name.replace('Dreme_','').replace('.log','')
centrimo_path = path_analysis + '/results/' + type_data + '/centrimo_out/centrimo.txt'
if os.path.exists(centrimo_path):
with open(centrimo_path, 'r') as centrimo_file:
for line in centrimo_file:
if 'DREME' in line:
motif = line.split('\t')[1].split(' ')[0]
print(motif, type_data)
centrimo_motif[motif] = type_data
print(len(centrimo_motif))
with open(path_motif + 'Motif_' + exp_design_name + '_raw.txt', 'r') as motif_log, \
open(path_motif + 'Motif_' + exp_design_name + '_Diff.txt', 'w') as motif_filter_log:
motif_filter_log.write("Motif\tData\tP-value\tCentrallyEnriched\n")
motif_log.readline()
for line in motif_log:
print(line.split('\t')[0])
found = False
datas = line.split('\t')[1].split(';')
for data in datas:
print(data)
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
motif_filter_log.write(line.strip()+'\tYes\n')
else:
motif_filter_log.write(line.strip() + '\tNo\n')
def select_centrally_enriched(path_analysis, path_motif, exp_design_name):
#data_selection = 'NoLP.'
centrimo_motif = dict()
for data_name in os.listdir(path_motif + 'logs/'):
if data_name.startswith('Dreme_') and data_name.endswith('.log') and exp_design_name in data_name:
type_data = data_name.replace('Dreme_','').replace('.log','')
centrimo_path = path_analysis + '/results/' + type_data + '/centrimo_out/centrimo.txt'
if os.path.exists(centrimo_path):
with open(centrimo_path, 'r') as centrimo_file:
for line in centrimo_file:
if 'DREME' in line:
motif = line.split('\t')[1].split(' ')[0]
print(motif, type_data)
centrimo_motif[motif] = type_data
print(len(centrimo_motif))
with open(path_motif + 'Motif_' + exp_design_name + '_raw.txt', 'r') as motif_log, \
open(path_motif + 'Motif_' + exp_design_name + '.txt', 'w') as motif_filter_log:
motif_filter_log.write("Motif\tData\tP-value\tCentrallyEnriched\n")
motif_log.readline()
for line in motif_log:
print(line.split('\t')[0])
if line.split('\t')[0] in centrimo_motif:
motif_filter_log.write(line.strip()+'\tYes\n')
motif_file = path_motif + '/motif/' + motif + '.meme'
motif_figure_file = path_motif + '/motif_figure/' + motif + '_nc.eps'
# motif_figure_file = path_motif + '/motif_figure/' + motif + '_nc.png'
# Meme-suite as to be installed for using = iupac2meme
iupac2_command = 'iupac2meme -dna ' + motif + ' > ' + motif_file
print(iupac2_command)
os.system(iupac2_command)
ceqlogo_command = 'ceqlogo -i ' + motif_file + ' -m ' + motif + ' -o ' + motif_figure_file + ' -f eps'
# ceqlogo_command = 'ceqlogo -i ' + motif_file + ' -m ' + motif + ' -o '+motif_figure_file+' -f png'
print('Run ' + ceqlogo_command)
os.system(ceqlogo_command)
def regroup_figures(path_motif, motif_list):
'''
Create SVG file with all motifs included
:param path_motif:
:param motif_list:
:return:
'''
print('Create PNG file with all motifs')
df_summary = pd.read_csv(path_motif + motif_list + '.txt', sep='\t')
# Need to split in different part of 20 motifs
print('Split motif list in figures of 20 moifs each')
list_df = list()
k = 0
# begin = 0
# for i in range(0, df_summary.shape[0]):
# k += 1
# if k % 20 == 0:
# df_temp = df_summary.iloc[begin:k]
# list_df.append(pd.DataFrame(df_temp))
# begin = k
# df_temp = df_summary.iloc[begin:k]
# list_df.append(df_temp)
#df_summary = df_summary.sort_values(by=['Motif'], ascending=[True])
# for k in range(0, len(list_df)):
# print(k)
# df_summary = list_df[k]
svg_text = '<?xml version=\"1.0\" encoding=\"utf-8\"?>\n<!-- Generator: Adobe Illustrator 15.0.0, SVG Export ' \
'Plug-In . SVG Version: 6.00 Build 0) -->\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\" \"' \
'http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<svg version=\"1.1\" id=\"Calque_1\" ' \
'xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" x=\"0px\" y=\"0px\"' \
' width=\"1600px\" height=\"'+str(len(df_summary.index)*100)+'px\" viewBox=\"0 0 1600 ' \
+str(len(df_summary.index)*100)+'\" xml:space=\"preserve\">\n'
i=0
for index, row in df_summary.iterrows():
motif = row['Motif']
data = row['Data']
#expdesign = row['Exp_design']
pvalue = str(row['P-value'])
print(motif)
image_file = path_motif + 'motif_figure/' + motif + '_nc.png'
new_row = '<image overflow=\"visible\" width=\"299\" height=\"176\" xlink:href=\"'+image_file+'\" ' \
'transform=\"matrix(0.5184 0 0 0.5184 10.00 '+ str(float(100*i))+')\">\n</image>\n'
image_file = path_motif + 'motif_figure/' + motif + '_rc.png'
if os.path.isfile(image_file):
new_row += '<image overflow=\"visible\" width=\"299\" height=\"176\" xlink:href=\"' + image_file + '\" ' \
'transform=\"matrix(0.5184 0 0 0.5184 170.00 '+ str(float(100*i))+')\">\n</image>\n'
new_row += '<text transform=\"matrix(0.5184 0 0 0.5184 340 '+ str(float(50+100*i))+')\" font-family=' \
'\"\'MyriadPro-Regular\'\" font-size=\"40\">'+data+'</text>\n'
#new_row += '<text transform=\"matrix(0.5184 0 0 0.5184 900 ' + str(float(50 + 100 * i)) + ')\" font-family=' \
# '\"\'MyriadPro-Regular\'\" font-size=\"40\">' + expdesign + '</text>\n'
new_row += '<text transform=\"matrix(0.5184 0 0 0.5184 1300 '+ str(float(50+100*i))+')\" font-family=' \
'\"\'MyriadPro-Regular\'\" font-size=\"40\">'+pvalue+'</text>\n'
#new_row += '<text transform=\"matrix(0.5184 0 0 0.5184 1000 ' + str(float(50 + 100 * i)) + ')\" font-family=' \
# '\"\'MyriadPro-Regular\'\" font-size=\"40\">' + comment + '</text>\n'
svg_text += new_row
i+=1
svg_text += '</svg>\n'
with open(path_motif + motif_list + '_' + str(k) + '.svg', 'w') as figure_file:
figure_file.write(svg_text)
print('Convert svg to png')
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
script = 'convert '+path_motif + motif_list + '_' + str(k)+'.svg '+path_motif + motif_list + '_'+ str(k)+'.png'
#os.system(script)
def figure_motif_clustering(path_motif, motif_list):
'''
Create SVG file with all motifs included
:param path_motif:
:param motif_list:
:return:
'''
print('Create SVG file with all motifs')
motiflist_filename = path_motif + motif_list
df_summary = pd.read_csv(motiflist_filename + '.txt', sep='\t')
svg_text = '<?xml version=\"1.0\" encoding=\"utf-8\"?>\n<!-- Generator: Adobe Illustrator 15.0.0, SVG Export ' \
'Plug-In . SVG Version: 6.00 Build 0) -->\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\" \"' \
'http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<svg version=\"1.1\" id=\"Calque_1\" ' \
'xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" x=\"0px\" y=\"0px\"' \
' width=\"1600px\" height=\"'+str(len(df_summary.index)*100)+'px\" viewBox=\"0 0 1600 ' \
+ str(len(df_summary.index)*100)+'\" xml:space=\"preserve\">\n'
i = 0
for index, row in df_summary.iterrows():
motif = row['Motif']
data = row['Data']
#expdesign = row['Exp_design']
pvalue = str(row['P-value'])
#comment = row['Comment']
print(motif)
image_file = path_motif + '../motif_figure/' + motif + '_nc.png'
new_row = '<image overflow=\"visible\" width=\"299\" height=\"176\" xlink:href=\"'+image_file+'\" ' \
'transform=\"matrix(0.5184 0 0 0.5184 10.00 '+ str(float(100*i))+')\">\n</image>\n'
image_file = path_motif + '../motif_figure/' + motif + '_rc.png'
if os.path.isfile(image_file):
new_row += '<image overflow=\"visible\" width=\"299\" height=\"176\" xlink:href=\"' + image_file + '\" ' \
'transform=\"matrix(0.5184 0 0 0.5184 170.00 '+ str(float(100*i))+')\">\n</image>\n'
new_row += '<text transform=\"matrix(0.5184 0 0 0.5184 340 '+ str(float(50+100*i))+')\" font-family=' \
'\"\'MyriadPro-Regular\'\" font-size=\"40\">'+data+'</text>\n'
#new_row += '<text transform=\"matrix(0.5184 0 0 0.5184 900 ' + str(float(50 + 100 * i)) + ')\" font-family=' \
# '\"\'MyriadPro-Regular\'\" font-size=\"40\">' + expdesign + '</text>\n'
new_row += '<text transform=\"matrix(0.5184 0 0 0.5184 1300 '+ str(float(50+100*i))+')\" font-family=' \
'\"\'MyriadPro-Regular\'\" font-size=\"40\">'+pvalue+'</text>\n'
#new_row += '<text transform=\"matrix(0.5184 0 0 0.5184 1000 ' + str(float(50 + 100 * i)) + ')\" font-family=' \
# '\"\'MyriadPro-Regular\'\" font-size=\"40\">' + comment + '</text>\n'
svg_text += new_row
i += 1
svg_text += '</svg>\n'
with open(motiflist_filename + '.svg', 'w') as figure_file:
figure_file.write(svg_text)
print('Convert svg to png')
script = 'convert ' + motiflist_filename + '.svg ' + motiflist_filename + '.png'
os.system(script)
os.remove(motiflist_filename + '.txt')
def clean_motif_list(exp_design_list, path_motif, motif_file_index):
'''
Combine list of motifs in one big table
:param exp_design_list:
:param path_motif:
:param motif_file_index:
:return:
'''
# read first table
path_table = path_motif + motif_file_index + exp_design_list[0] + '.txt'
df_motif = pd.read_csv(path_table, sep='\t', index_col=0)
df_motif['Exp_design'] = exp_design_list[0]
df_motif = df_motif.astype(str)
#for i in [1,len(exp_design_list)
print(list(df_motif))
print(df_motif.index)
for i in range(1, len(exp_design_list)):
path_table_2 = path_motif + motif_file_index + exp_design_list[i] + '.txt'
df_motif_2 = pd.read_csv(path_table_2, sep='\t', index_col=0)
df_motif_2['Exp_design'] = exp_design_list[i]
df_motif_2 = df_motif_2.astype(str)
for motif in df_motif_2.index:
if motif in df_motif.index:
for colname in df_motif.columns:
df_motif[colname][motif] += ';' + df_motif_2[colname][motif]
else:
df_motif = df_motif.append(pd.DataFrame(df_motif_2.loc[motif]).transpose(),sort=True)
df_motif.to_csv(path_motif + 'Motif_Final.txt', sep='\t', header=True)
def run_fimo(path_analysis, exp_design_name, path_motif, path_motif_list, fimo_file):
'''
Creates a fimo.sh file with all the command to run
:param path_analysis: path where the fasta files, background, and fimo results should be
:param exp_design_name: name of the peaks : example: CecAm_Raw_1
:param path_motif: path where the motif will be found
:param motif_list_filename: path of the motif list
:return: save file to path_motif + 'Fimo.sh'
'''
with open(path_motif_list + '.txt', 'r') as motif_file:
for row in motif_file:
motif_list.append(row.split('\t')[0].strip())
motif_file = path_motif + 'motif/' + motif + '.meme'
fasta_file = path_analysis + 'fasta/' + data_name + '.fasta'
background_file = path_analysis + 'results/' + data_name + '/background'
folder_fimo = path_motif + 'fimo/' + motif + '_' + data_name
fimo_sh = 'fimo --parse-genomic-coord --verbosity 1 --thresh 1e-2 --max-stored-scores 1000000 ' \
'--oc ' + folder_fimo + ' --bgfile ' + background_file + ' ' + motif_file + ' ' + fasta_file
print(fimo_sh)
motif_sh.write(fimo_sh+'\n')
def run_centrimo(path_analysis, exp_design_name, path_motif, motif_list_filename):
'''
Creates a centrimo.sh file with all the command to run
:param path_analysis: path where the fasta files, background, and fimo results should be
:param exp_design_name: name of the peaks : example: CecAm_Raw_1
:param path_motif: path where the motif will be found
:param motif_list_filename: path of the motif list
:return: save file to path_motif + 'Centrimo.sh'
'''
motif_list = list()
with open(path_motif + motif_list_filename + '.txt', 'r') as motif_file:
for row in motif_file:
motif_list.append(row.split('\t')[0].strip())
with open(path_motif + 'Centrimo.sh', 'w') as motif_sh:
for motif in motif_list:
motif_file = path_analysis + 'motif/' + motif + '.meme'
fasta_file = path_analysis + 'fasta/' + data_name + '.fasta'
background_file = path_analysis + 'results/' + data_name + '/background'
folder_centrimo = path_analysis + 'centrimo/' + motif + '_' + data_name
centrimo_sh = 'centrimo -seqlen 150 -verbosity 1 -oc ' + folder_centrimo +\
' --bgfile ' + background_file + ' -score 5.0 '\
'-ethresh 10.0 ' + fasta_file + ' '+motif_file
print(centrimo_sh)
motif_sh.write(centrimo_sh + '\n')
def create_motif_table(exp_design_name, path_motif, path_motif_list):
'''
Creates two tables summarizing occurence of motif for each peak
:param path_analysis: path where the fasta files, background, and fimo results should be
:param exp_design_name: name of the peaks : example: CecAm_Raw_1
:param path_motif: path where the motif will be found
:param motif_list_filename: path of the motif list
:return: save file to path_analysis + motif_list_filename + '_score.txt'
and path_analysis + motif_list_filename + '_count.txt'
'''
with open(path_motif_list + '.txt', 'r') as motif_file:
for row in motif_file:
motif_list.append(row.split('\t')[0].strip())
print(path_analysis + 'fasta/' + exp_design_name + '.fasta' )
fasta_seq = SeqIO.to_dict(SeqIO.parse(path_analysis + 'fasta/' + exp_design_name + '.fasta' , "fasta"))
nb_peaks = len(fasta_seq.keys())
np_motif = np.zeros((nb_peaks, len(motif_list)))
df_motif_score = pd.DataFrame(np_motif, index=fasta_seq.keys(), columns=motif_list)
np_motif = np.zeros((nb_peaks, len(motif_list)))
df_motif_count = pd.DataFrame(np_motif, index=fasta_seq.keys(), columns=motif_list)
np_motif = np.ones((nb_peaks, len(motif_list)))
df_motif_pvalue = pd.DataFrame(np_motif, index=fasta_seq.keys(), columns=motif_list)
for motif in motif_list:
print(motif)
df_motif_peaks = pd.read_csv(path_motif + 'fimo/' + motif + '_' + data_name +
grouped = df_motif_peaks[['sequence name','score']].groupby('sequence name')
score = grouped.sum()
df_motif_score[motif] = score
counted = grouped.count()
df_motif_count[motif] = counted
df_motif_score.to_csv(path_motif_list + '_score.txt', sep='\t')
df_motif_count.to_csv(path_motif_list + '_count.txt', sep='\t')
#df_motif_pvalue.to_csv(path_motif + exp_design_name + '_' + motif_list_filename + '_pvalue.txt', sep='\t')
def get_size_fasta(path_analysis, exp_design_name):
with open(path_analysis + 'Fasta_Summary.txt', 'w') as fasta_summary:
for data_name in os.listdir(path_analysis+'fasta/'):
if data_name.endswith('.fasta'):
print(data_name)
fasta_seq = SeqIO.to_dict(SeqIO.parse(path_analysis+'fasta/'+data_name, "fasta"))
print(data_name,len(fasta_seq))
fasta_summary.write(data_name.replace('.fasta','')+'\t'+str(len(fasta_seq))+'\n')
def motif_vs_fasta(path_analysis, exp_design_name, path_motif, motif_list_filename):
'''
Creates two tables summarizing occurence of motif for each fasta file
:param path_analysis: path where the fasta files, background, and fimo results should be
:param exp_design_name: name of the peaks : example: CecAm_Raw_1
:param path_motif: path where the motif will be found
:param motif_list_filename: path of the motif list
:return: save file to path_analysis + motif_list_filename + '_score.txt'
and path_analysis + motif_list_filename + '_count.txt'
'''
# read fasta summary
fasta_to_size = dict()
with open(path_analysis + 'Fasta_Summary.txt', 'r') as fasta_summary:
fasta_name = row.split('\t')[0]
fasta_size = row.split('\t')[1].strip()
if fasta_size != '0':
fasta_to_size[fasta_name] = fasta_size
# read list
motif_list = list()
with open(path_motif + motif_list_filename + '.txt', 'r') as motif_file:
for row in motif_file:
motif_list.append(row.split('\t')[0].strip())
df_motif_score = pd.read_csv(path_analysis + motif_list_filename + '_score.txt', index_col=0, sep='\t')
df_motif_count = pd.read_csv(path_analysis + motif_list_filename + '_count.txt', index_col=0, sep='\t')
# create motif vs fasta tables
nb_fasta = len(fasta_to_size.keys())
np_fasta = np.zeros((len(motif_list), nb_fasta))
df_motif_fasta_score = pd.DataFrame(np_fasta, index=motif_list, columns=fasta_to_size.keys())
np_fasta = np.zeros((len(motif_list), nb_fasta))
df_motif_fasta_count = pd.DataFrame(np_fasta, index=motif_list, columns=fasta_to_size.keys())
print(motif_list)
# go through all fasta file
for fasta_name, fasta_size in fasta_to_size.items():
fasta_peaks = SeqIO.to_dict(SeqIO.parse(path_analysis+'fasta/'+fasta_name+'.fasta', 'fasta'))
#print(fasta_peaks.keys())
for motif in motif_list:
motif_score = df_motif_score.loc[fasta_peaks.keys(), motif].sum()
df_motif_fasta_score[fasta_name][motif] = float(motif_score)/float(fasta_size)
motif_count = df_motif_count.loc[fasta_peaks.keys(), motif].sum()
df_motif_fasta_count[fasta_name][motif] = float(motif_count)/float(fasta_size)
df_motif_fasta_score.to_csv(path_analysis + motif_list_filename + '_fasta_score.txt', sep='\t')
df_motif_fasta_count.to_csv(path_analysis + motif_list_filename + '_fasta_count.txt', sep='\t')
#exp_design_name = 'LivOld'
#exp_design_name = 'Cecum_all_MaxMaxValues_1'
exp_design_name = 'Liver_all_T13_MaxMaxValues_3'
path_analysis = path + 'PeakDiffExpression/' + exp_design_name + '/Motif/'
path_motif = path + 'PeakDiffExpression/Motif/'
#motif_list_filename = 'Motif_'+exp_design_name+'_count'
motif_list_filename = 'Motif_' + exp_design_name
path_motif_list = path_analysis + motif_list_filename
# Create all folders for motif analysis
# if not os.path.isdir(path_motif + 'logs/'):
# os.mkdir(path_motif + 'logs/')
# if not os.path.isdir(path_motif + 'motif/'):
# os.mkdir(path_motif + 'motif/')
# if not os.path.isdir(path_motif + 'motif_figure/'):
# os.mkdir(path_motif + 'motif_figure/')
# if not os.path.isdir(path_motif + 'fimo/'):
# os.mkdir(path_motif + 'fimo/')
# if not os.path.isdir(path_motif + 'centrimo/'):
# os.mkdir(path_motif + 'centrimo/')
# first look at log to see which software crashed
#parse_all_logs(path_analysis, exp_design_name)
# Parse meme results and extract all motifs
#parse_dreme(path_analysis, path_motif, exp_design_name)
#regroup_motifs(path_motif, exp_design_name, pvalue_cutoff)
# Select motif centrally enriched -> Could be done automatically
#select_centrally_enriched(path_analysis, path_motif, exp_design_name)
# regroup all motifs for comparisons
# Remove all logs for each exp_design_name
pvalue_cutoff = 0.01
#regroup_motifs_diff(path_motif, exp_design_name, pvalue_cutoff)
# Select motif centrally enriched -> Could be done automatically
#select_centrally_enriched_diff(path_analysis, path_motif, exp_design_name)
# Manually filter motif list and put it in path_motif
#motif = 'NBCAN'
#add_motif(path_motif, motif, motif_list_filename)
# combine list of motifs
exp_design_list = ['Liver_all_MaxMaxValues_1', 'Liver_all_MaxMaxValues_3',
'Cecum_all_MaxMaxValues_1', 'Cecum_all_MaxMaxValues_3']
motif_file_index = 'Motif_'
#clean_motif_list(exp_design_list, path_motif, motif_file_index)
# put all motifs figures together to filter the list
# nedd to install imagemagick !!!
motif_list_filename = 'Motif_Final'
#regroup_figures(path_motif, motif_list_filename)
path_analysis = pathTars + 'PeakDiffExpression/' + exp_design_name + '/Motif/'
#path_motif = path_analysis
path_motif = pathTars + 'PeakDiffExpression/Motif/'
#motif_list_filename = 'Motif_'+exp_design_name+'_count'
motif_list_filename = 'Motif_' + exp_design_name# + '_Diff'
path_motif_list = path + 'PeakDiffExpression/Motif/' + motif_list_filename
#fimo_file = path + 'PeakDiffExpression/Motif/' + 'Fimo_' + exp_design_name + '.sh'
#motif_list_filename = 'Motif_' + exp_design_name
#path_motif_list = path + 'PeakDiffExpression/Motif/' + motif_list_filename
fimo_file = path + 'PeakDiffExpression/Motif/' + 'Fimo_' + exp_design_name + '.sh'
# write sh file for running fimo
print(path_motif_list)
#run_fimo(path_analysis, exp_design_name, path_motif, path_motif_list, fimo_file)
# regroup everything in one .sh file
#print('cat '+path_motif+ '/Fimo_* > ' + path_motif + '/Fimo.sh')
# write sh file for running centrimo
#run_centrimo(path_analysis, exp_design_name, path_motif, motif_list_filename)
# Run create_motif_table.py
# python src/python/create_motif_table.py -p /pasteur/projets/policy01/m6aAkker/ -e Liver_all_MaxMaxValues_3 -m Motif_Liver_all_MaxMaxValues_3
# Using R run motif analysis for clustering of motif and biocondition
path_motif = path + 'PeakDiffExpression/Motif/'
#exp_design_name = 'Liver_all_T13_MaxMaxValues_3'
#exp_design_name = 'Liver_all_MaxMaxValues_1'
#exp_design_name = 'Liver_all_MaxMaxValues_3'
#exp_design_name = 'Cecum_all_MaxMaxValues_1'
exp_design_name = 'Cecum_all_withoutabxGF_MaxMaxValues_3'
exp_design_name = exp_design_name + ''
#######
# Run first motif_analysis.R to create '_list.txt'
#######
# for Liver
# index_files = {'_log2count_list','_log2count_Pos_list', '_log2count_Comp_list_T3','_log2count_Comp_list_T13',
# '_log2count_Comp_list_T3T13','_log2count_Biocond_list',
# '_fimoscore_list', '_fimoscore_Pos_list', '_fimoscore_Comp_list_T3', '_fimoscore_Comp_list_T13',
# '_fimoscore_Comp_list_T3T13', '_fimoscore_Biocond_list'}
# for Cecum
index_files = {'_log2count_Pos_NoIntron_list', '_fimoscore_Pos_NoIntron_list'}
# index_files = {'_log2count_list','_log2count_Pos_list', '_log2count_Comp_list', '_log2count_Biocond_list',
# '_fimoscore_list', '_fimoscore_Pos_list', '_fimoscore_Comp_list', '_fimoscore_Biocond_list'}
path_motif = path + 'PeakDiffExpression/Motif/' + 'Motif_' + exp_design_name + '/'
# use clustered list of motif to recreate figure
for index_file in index_files:
motif_list_filename = 'Motif_' + exp_design_name + index_file
figure_motif_clustering(path_motif, motif_list_filename)