Newer
Older
#!/usr/bin/env python
import csv
from collections import defaultdict
import sys, getopt
import os
import math
from shutil import copyfile
import pandas as pd
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
from scipy.stats import chi2
from Bio import SeqIO
import os.path
SOFTWARES = {'meme','dreme','centrimo','meme_tomtom'}
##TYPES_SEARCHES = {'All','Narrow','Const','Max'}
def get_size_fasta(path_motif, exp_design_name):
with open(path_motif + 'Fasta_Summary.txt', 'w') as fasta_summary:
for data_name in os.listdir(path_motif+'fasta/'):
if data_name.endswith('.fasta'):
print(data_name)
fasta_seq = SeqIO.to_dict(SeqIO.parse(path_motif+'fasta/'+data_name, "fasta"))
print(data_name,len(fasta_seq))
fasta_summary.write(data_name.replace('.fasta','')+'\t'+str(len(fasta_seq))+'\n')
def parse_all_logs(path_motif, exp_design_name):
with open(path_motif + '../Motif_search.log', 'w') as general_log:
header = 'Data_name\t' + '\t'.join(SOFTWARES)
general_log.write(header+'\n')
for data_name in os.listdir(path_motif):
if not data_name.startswith('.') and not data_name.endswith('.log') and not data_name.endswith('.sh'):
progress_filename = path_motif + data_name + '/progress_log.txt'
line = data_name + '\t'
for software in SOFTWARES:
found = False
with open(progress_filename,'r') as file:
for row in file:
status_soft = 'name: '+software+' status: 0'
if status_soft in row:
found = True
if found:
line += '1\t'
else:
line += '0\t'
general_log.write(line.strip() + '\n')
def parse_dreme(path_motif, exp_design_name):
with open(path_motif + 'dreme.sh', 'w') as dreme_file:
for data_name in os.listdir(path_motif):
if exp_design_name in data_name:
print(data_name)
if not data_name.startswith('.') and not data_name.endswith('.log') and not data_name.endswith('.sh'):
# print(data_name)
dreme_xml = path_motif + data_name + '/dreme_out/dreme.xml'
if os.path.exists(dreme_xml):
dreme_list = list()
with open(dreme_xml, 'r') as file:
for row in file:
dreme_list.append(row.strip())
if '<command_line>' in row:
dreme_file.write(row)
dreme_txt = path_motif + data_name + '/dreme_out/dreme.txt'
dreme_txt_list = list()
with open(dreme_txt, 'r') as file:
for row in file:
dreme_txt_list.append(row.strip())
dreme_txt_intro = ''
write_intro = False
for row in dreme_txt_list:
if row.startswith('MOTIF '):
break
if 'MEME version' in row:
write_intro = True
if write_intro:
dreme_txt_intro += row + '\n'
#print(dreme_txt_intro)
# parse dreme
with open(path_motif + '../logs/Dreme_' + data_name + '.log', 'w') as general_log:
header = 'ID\tMotif\tNb_sites\tPos_Occurence\tNeg_Occurence\tNb_Seq\t' \
'Percent\tPos_Percent\tNeg_Percent\tEvalue'
general_log.write(header + '\n')
# search length fasta
for line in dreme_list:
if '<positives name=' in line:
number_seq = float(line.split(' ')[2].replace('\"','').replace('count=',''))
# search motifs
for i in range(1, len(dreme_list)):
line = dreme_list[i]
if '<motifs>' in line:
index_motifs = i
break
# get motifs info
for k in range(index_motifs+1, len(dreme_list)):
if '<motif' in dreme_list[k]:
new_line = dreme_list[k].replace('\"','').split(' ')
#print(new_line)
id = new_line[1].replace('id=', '')
#print(id,data_name)
print(dreme_txt_intro)
seq = new_line[2].replace('seq=', '')
occ = float(new_line[4].replace('nsites=', ''))
pos_occ = float(new_line[5].replace('p=', ''))
neg_occ = float(new_line[6].replace('n=', ''))
evalue = new_line[8].replace('evalue=', '')
# save table
line_to_write = [id, seq, str(occ), str(pos_occ),str(neg_occ), str(number_seq),
str(occ/number_seq), str(pos_occ/number_seq), str(neg_occ/number_seq),
str(evalue)]
general_log.write('\t'.join(line_to_write) + '\n')
# copy png file
for imagefile in os.listdir(path_motif + data_name + '/dreme_out/'):
if id in imagefile:
if 'nc_' in imagefile:
src = path_motif + data_name + '/dreme_out/' + imagefile
dst = path_motif + '../motif_figure/'+seq + '_nc.png'
copyfile(src, dst)
else:
src = path_motif + data_name + '/dreme_out/' + imagefile
dst = path_motif + '../motif_figure/' + seq + '_rc.png'
copyfile(src, dst)
# save motif
with open(path_motif + '../motif/' + seq + '.meme', 'w') as meme_file:
meme_file.write(dreme_txt_intro+'\n')
# find motif info
dreme_txt_motif = ''
write_motif = False
for row in dreme_txt_list:
if write_motif and row.startswith('MOTIF '):
break
if ('MOTIF '+seq+' DREME') in row:
write_motif = True
if write_motif:
dreme_txt_motif += row + '\n'
print(dreme_txt_motif)
meme_file.write(dreme_txt_motif + '\n')
def regroup_motifs(path_motif, exp_design_name):
motif_set = set()
dict_dataset = defaultdict(list)
dict_evalue = defaultdict(list)
for data_name in os.listdir(path_motif+'logs/'):
if data_name.startswith('Dreme_') and data_name.endswith('.log'):
type_data = data_name.replace('Dreme_','').replace('.log','')
print(type_data,data_name)
with open(path_motif+'logs/'+data_name,'r') as log_file:
log_file.readline()
for line in log_file:
motif = line.split('\t')[1]
evalue = line.strip().split('\t')[-1]
motif_set.add(motif)
dict_dataset[motif].append(type_data)
dict_evalue[motif].append(evalue)
with open(path_motif + 'Motif_'+exp_design_name+'.txt','w') as motif_log:
motif_log.write("Motif\tData\tP-value\n")
for motif in motif_set:
motif_log.write(motif+'\t'+';'.join(dict_dataset[motif])+'\t'+';'.join(dict_evalue[motif])+'\n')
def add_motif(path_motif, motif, motif_list_filename):
motif_file = path_motif + '/motif/' + motif + '.meme'
motif_figure_file = path_motif + '/motif_figure/' + motif + '_nc.eps'
# motif_figure_file = path_motif + '/motif_figure/' + motif + '_nc.png'
# Meme-suite as to be installed for using = iupac2meme
iupac2_command = 'iupac2meme -dna ' + motif + ' > ' + motif_file
print(iupac2_command)
os.system(iupac2_command)
ceqlogo_command = 'ceqlogo -i ' + motif_file + ' -m ' + motif + ' -o ' + motif_figure_file + ' -f eps'
# ceqlogo_command = 'ceqlogo -i ' + motif_file + ' -m ' + motif + ' -o '+motif_figure_file+' -f png'
print('Run ' + ceqlogo_command)
os.system(ceqlogo_command)
def regroup_figures(path_motif, motif_list):
'''
Create SVG file with all motifs included
:param path_motif:
:param motif_list:
:return:
'''
print('Create PNG file with all motifs')
df_summary = pd.read_csv(path_motif + motif_list + '.txt', sep='\t')
#df_summary = df_summary.sort_values(by=['Motif'], ascending=[True])
svg_text = '<?xml version=\"1.0\" encoding=\"utf-8\"?>\n<!-- Generator: Adobe Illustrator 15.0.0, SVG Export ' \
'Plug-In . SVG Version: 6.00 Build 0) -->\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\" \"' \
'http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<svg version=\"1.1\" id=\"Calque_1\" ' \
'xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" x=\"0px\" y=\"0px\"' \
' width=\"1300px\" height=\"'+str(len(df_summary.index)*100)+'px\" viewBox=\"0 0 1300 '\
+str(len(df_summary.index)*100)+'\" xml:space=\"preserve\">\n'
i=0
for index, row in df_summary.iterrows():
motif = row['Motif']
data = row['Data']
pvalue = row['P-value']
image_file = 'motif_figure/' + motif + '_nc.png'
new_row = '<image overflow=\"visible\" width=\"299\" height=\"176\" xlink:href=\"'+image_file+'\" ' \
'transform=\"matrix(0.5184 0 0 0.5184 10.00 '+ str(float(100*i))+')\">\n</image>\n'
image_file = 'motif_figure/' + motif + '_rc.png'
new_row += '<image overflow=\"visible\" width=\"299\" height=\"176\" xlink:href=\"' + image_file + '\" ' \
'transform=\"matrix(0.5184 0 0 0.5184 170.00 '+ str(float(100*i))+')\">\n</image>\n'
new_row += '<text transform=\"matrix(0.5184 0 0 0.5184 340 '+ str(float(50+100*i))+')\" font-family=' \
'\"\'MyriadPro-Regular\'\" font-size=\"40\">'+data+'</text>\n'
new_row += '<text transform=\"matrix(0.5184 0 0 0.5184 800 '+ str(float(50+100*i))+')\" font-family=' \
'\"\'MyriadPro-Regular\'\" font-size=\"40\">'+pvalue+'</text>\n'
svg_text += new_row
i+=1
svg_text += '</svg>\n'
with open(path_motif + motif_list + '.svg', 'w') as figure_file:
figure_file.write(svg_text)
print('Convert svg to png')
os.system('convert '+path_motif + motif_list + '.svg '+path_motif + motif_list + '.png')
def run_fimo(path_motif, path_script, exp_design_name, motif_list_filename):
motif_list = list()
with open(path_motif + motif_list_filename + '.txt', 'r') as motif_file:
for row in motif_file:
motif_list.append(row.split('\t')[0].strip())
with open(path_motif + 'Fimo.sh', 'w') as motif_sh:
for motif in motif_list:
motif_file = path_script + 'motif/' + motif + '.meme'
print(motif_file)
fasta_file = path_script + 'fasta/' + data_name + '.fasta'
background_file = path_script + 'results/' + data_name + '/background'
folder_fimo = path_script + 'fimo/' + motif + '_' + data_name
fimo_sh = 'fimo --parse-genomic-coord --verbosity 1 --thresh 1e-2 --max-stored-scores 1000000 ' \
'--oc ' + folder_fimo + ' --bgfile ' + background_file + ' ' + motif_file + ' ' + fasta_file
print(fimo_sh)
motif_sh.write(fimo_sh+'\n')
def run_centrimo(path_motif, path_script, exp_design_name, motif_list_filename, data_list_filename):
motif_list = list()
with open(path_motif + motif_list_filename + '.txt', 'r') as motif_file:
for row in motif_file:
motif_list.append(row.split('\t')[0].strip())
data_list = list()
with open(path_motif + data_list_filename + '.txt', 'r') as data_file:
for row in data_file:
data_list.append(row.split('\t')[0].strip())
with open(path_motif + 'Centrimo.sh', 'w') as motif_sh:
for motif in motif_list:
motif_file = path_script + 'motif/' + motif + '.meme'
#print(motif_file)
fasta_file = path_script + 'fasta/' + data_name + '.fasta'
background_file = path_script + 'results/' + data_name + '/background'
folder_centrimo = path_script + 'centrimo/' + motif + '_' + data_name
centrimo_sh = 'centrimo -seqlen 150 -verbosity 1 -oc ' + folder_centrimo +\
' --bgfile ' + background_file + ' -score 5.0 '\
'-ethresh 10.0 ' + fasta_file + ' '+motif_file
print(centrimo_sh)
motif_sh.write(centrimo_sh + '\n')
def create_motif_table(path_motif, path_script, exp_design_name, motif_list_filename, data_list_filename):
motif_list = list()
with open(path_motif + motif_list_filename + '.txt', 'r') as motif_file:
for row in motif_file:
motif_list.append(row.split('\t')[0].strip())
data_list = list()
with open(path_motif + data_list_filename + '.txt', 'r') as data_file:
for row in data_file:
data_list.append(row.split('\t')[0].strip())
fasta_to_length = dict()
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
fasta_seq = SeqIO.to_dict(SeqIO.parse(path_motif + 'fasta/'+ exp_design_name +'.fasta', "fasta"))
nb_peaks = len(fasta_seq.keys())
np_motif = np.zeros((nb_peaks, len(motif_list)))
df_motif_score = pd.DataFrame(np_motif, index=fasta_seq.keys(), columns=motif_list)
np_motif = np.zeros((nb_peaks, len(motif_list)))
df_motif_count = pd.DataFrame(np_motif, index=fasta_seq.keys(), columns=motif_list)
np_motif = np.ones((nb_peaks, len(motif_list)))
df_motif_pvalue = pd.DataFrame(np_motif, index=fasta_seq.keys(), columns=motif_list)
for motif in motif_list:
print(motif)
for data in data_list:
print(data)
df_motif_peaks = pd.read_csv(path_motif + 'fimo/' + motif + '_' + data + '/fimo.txt', index_col=0, sep='\t')
grouped = df_motif_peaks[['sequence name','score']].groupby('sequence name')
score = grouped.sum()
df_motif_score[motif] = score
counted = grouped.count()
df_motif_count[motif] = counted
# df_motif_pvalue[motif][peak] += pvalue
df_motif_score.to_csv(path_motif + motif_list_filename + '_score.txt', sep='\t')
df_motif_count.to_csv(path_motif + motif_list_filename + '_count.txt', sep='\t')
#df_motif_pvalue.to_csv(path_motif + exp_design_name + '_' + motif_list_filename + '_pvalue.txt', sep='\t')
def motif_vs_fasta(path_motif, path_script, exp_design_name, motif_list_filename, data_list_filename):
# read fasta summary
fasta_to_size = dict()
with open(path_motif + 'Fasta_Summary.txt', 'r') as fasta_summary:
for row in fasta_summary:
fasta_name = row.split('\t')[0]
fasta_size = row.split('\t')[1].strip()
if fasta_size != '0':
fasta_to_size[fasta_name] = fasta_size
# read list
motif_list = list()
with open(path_motif + motif_list_filename + '.txt', 'r') as motif_file:
for row in motif_file:
motif_list.append(row.split('\t')[0].strip())
# read motif summary
df_motif_score = pd.read_csv(path_motif + motif_list_filename + '_score.txt', index_col=0, sep='\t')
df_motif_count = pd.read_csv(path_motif + motif_list_filename + '_count.txt', index_col=0, sep='\t')
# create motif vs fasta tables
nb_fasta = len(fasta_to_size.keys())
np_fasta = np.zeros((len(motif_list), nb_fasta))
df_motif_fasta_score = pd.DataFrame(np_fasta, index=motif_list, columns=fasta_to_size.keys())
np_fasta = np.zeros((len(motif_list), nb_fasta))
df_motif_fasta_count = pd.DataFrame(np_fasta, index=motif_list, columns=fasta_to_size.keys())
print(motif_list)
# go through all fasta file
for fasta_name, fasta_size in fasta_to_size.items():
fasta_peaks = SeqIO.to_dict(SeqIO.parse(path_motif+'fasta/'+fasta_name+'.fasta', 'fasta'))
#print(fasta_peaks.keys())
for motif in motif_list:
motif_score = df_motif_score.loc[fasta_peaks.keys(), motif].sum()
df_motif_fasta_score[fasta_name][motif] = float(motif_score)/float(fasta_size)
motif_count = df_motif_count.loc[fasta_peaks.keys(), motif].sum()
df_motif_fasta_count[fasta_name][motif] = float(motif_count)/float(fasta_size)
df_motif_fasta_score.to_csv(path_motif + motif_list_filename + '_fasta_score.txt', sep='\t')
df_motif_fasta_count.to_csv(path_motif + motif_list_filename + '_fasta_count.txt', sep='\t')
#exp_design_name = 'LivOld'
exp_design_name = 'LiverZT_MaxValues'
#exp_design_name = 'LivOld_MaxValues'
#exp_design_name = 'CecAm_MaxValues'
#path = '/pasteur/projets/policy01/m6aAkker/'
#path_motif = path + 'PeakDiffExpression/' + exp_design_name + '/Motif/'
path_motif = path + 'PeakDiffExpression/Motif/'
path_peaks = path + 'PeakDetection/Peaks/'
# if not os.path.isdir(path_motif + 'logs/'):
# os.mkdir(path_motif + 'logs/')
# if not os.path.isdir(path_motif + 'motif/'):
# os.mkdir(path_motif + 'motif/')
# if not os.path.isdir(path_motif + 'motif_figure/'):
# os.mkdir(path_motif + 'motif_figure/')
# if not os.path.isdir(path_motif + 'fimo/'):
# os.mkdir(path_motif + 'fimo/')
# if not os.path.isdir(path_motif + 'centrimo/'):
# os.mkdir(path_motif + 'centrimo/')
#path_script = path + 'PeakDiffExpression/' + exp_design_name + '/Motif/'
path_script = '/pasteur/projets/policy01/m6aAkker/' + 'PeakDiffExpression/' + exp_design_name + '/Motif/'
# get size fasta
#get_size_fasta(path_motif, exp_design_name)
# first look at log to see which software crashed
#parse_all_logs(path_motif+'/results/', exp_design_name)
# Parse meme results and extract all motifs
#parse_dreme(path_motif+'/results/', exp_design_name)
# regroup all motifs
#regroup_motifs(path_motif, exp_design_name)
#motif_list_filename = 'Motif_'+exp_design_name+'_count'
motif_list_filename = 'Motif_List'
#motif="NGGACN"
#add_motif(path_motif, motif, motif_list_filename)
#motif = 'NBCAN'
#add_motif(path_motif, motif, motif_list_filename)
# put all motifs figures together to filter the list
#regroup_figures(path_motif, motif_list_filename)
data_list_filename = 'list_data_' + exp_design_name
#data_list_filename = 'list_data_All'
# write sh file for running fimo
run_fimo(path_motif, path_script, exp_design_name, motif_list_filename)
# write sh file for running centrimo
#run_centrimo(path_motif, path_script, exp_design_name, motif_list_filename, data_list_filename)
# create a table grouping peak marginal score for each motif
#create_motif_table(path_motif, path_script, exp_design_name, motif_list_filename, data_list_filename)
# Count marginal scrore and marginal motif presence for every fasta file
#motif_vs_fasta(path_motif, path_script, exp_design_name, motif_list_filename, data_list_filename)