Skip to content
Snippets Groups Projects
Commit 54ee9a2f authored by Fabien  MAREUIL's avatar Fabien MAREUIL
Browse files

add tutorials texts

parent 5a10af3c
No related branches found
No related tags found
No related merge requests found
Pipeline #132451 passed
......@@ -177,17 +177,14 @@
<div class="mb-3 card {% if forloop.counter == 1 %} border-primary {% else %} border-info {% endif %} border_card"
id="card_{{ forloop.counter }}">
<div class="card-header text-center">
<a class="submithref" href="{% url 'cavities' %}?pdbsearch={{ pdb.code }}"><strong>{{
pdb.code }}</strong></a>
<a class="submithref" href="{% url 'cavities' %}?pdbsearch={{ pdb.code }}"><strong>{{ pdb.code }}</strong></a>
</div>
<div class="card-body text-nowrap">
{% for chain in pdb.chain_set.all %}
Chain {{ chain.pdb_chain_id }} <a class="submithref"
href="{% url 'cavities' %}?uniprotid={{ chain.protein.uniprot_id }}">{{
chain.protein.uniprot_id }}</a>
href="{% url 'cavities' %}?uniprotid={{ chain.protein.uniprot_id }}">{{ chain.protein.uniprot_id }}</a>
<a class="submithref"
href="{% url 'cavities' %}?organism={{ chain.protein.organism.name }}">{{
chain.protein.organism.name }}</a>
href="{% url 'cavities' %}?organism={{ chain.protein.organism.name }}">{{ chain.protein.organism.name }}</a>
</br>
{% endfor %}
</div>
......@@ -266,8 +263,7 @@ Comparison and druggability prediction of protein-ligand binding sites from phar
<tr>
{% for td in avg_std|make_list %}
{% if forloop.first %}
<td style="background-color:rgb({{ td|get_color }})" title="{{ td }}">{{
td|floatformat:2|intcomma }}</td>
<td style="background-color:rgb({{ td|get_color }})" title="{{ td }}">{{ td|floatformat:2|intcomma }}</td>
{% elif forloop.last %}
<td style="direction: rtl;background-color:rgb({{ td|get_color }})"
title="{{ td }}">{{ td|floatformat:2|intcomma }}</td>
......
......@@ -49,7 +49,20 @@
allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen></iframe>
<div class="card-body">
<p class="card-text">Visualize pockets on the Protein Interaction Explorer.</p>
<p class="card-text">
This tutorial guides the user on how to:
<ul>
<li>navigate and
access the Protein Interaction Explorer (PIE) section of the IPPIDB
web-server</li>
<li>view list of PIE functionalities</li>
<li>display all available pockets in PIE as an “Overview” list</li>
<li>search for any protein they want to visualize</li>
<li>open the PIE 3D viewer to display the protein chains and associated
pockets</li>
<li>move/zoom 3D structures on the viewer</li>
</ul>
</p>
</div>
</div>
</div>
......@@ -68,7 +81,7 @@
<p class="card-text">A short video that shows how you can efficiently add new
data
to iPPI-DB using the contribute mode and your ORCID ID</p>
to iPPI-DB using the contribute mode and your ORCID ID.</p>
</div>
</div>
</div>
......@@ -84,8 +97,26 @@
allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen></iframe>
<div class="card-body">
<p class="card-text">Analyze druggability / interactibility of proteins on the
Protein Interaction Explorer.</p>
<p class="card-text">This tutorial shows how to use the PIE (Protein Interaction
Explorer) 3D viewer to:
<ul>
<li>display and scale druggability prediction scores by InDeep<sup>*</sup>
<strong>and superpose them on the 3D protein
structures
</li>
<li>display and
scale InDeep<sup>*</sup></strong>predicted interactibility scores
superposed on 3D protein
structures</li>
</ul>
</p>
<p class="card-text"><sup>*</sup><small>Indeep: V. Mallet, L. Ruano, A. Franel,
M. Nilges, K.
Druart,
G.Bouvier, O.Sperandio, InDeep: 3D fully convolutional neural networks
to assist in silico drug design on protein-protein interactions,
Bioinformatics, Volume 38, Issue 5, March 2022, Pages 1261-1268</small>
</p>
</div>
</div>
</div>
......@@ -106,8 +137,15 @@
allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen></iframe>
<div class="card-body">
<p class="card-text">Visualize hotspots and ligands on the Protein Interaction
Explorer.</p>
<p class="card-text">This tutorial shows how to use the PIE (Protein Interaction
Explorer) 3D viewer to:
<ul>
<li>visualize hotspots detected by FoldX for a protein complex</li>
<li>visualize ligands superposed with chains of related
proteins</li>
<li>show colocalization of ligands with predicted hot spots</li>
</ul>
</p>
</div>
</div>
</div>
......@@ -128,8 +166,17 @@
allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen></iframe>
<div class="card-body">
<p class="card-text">Study closely related pockets on the Protein Interaction
Explorer.</p>
<p class="card-text">This tutorial shows how one can:
<ul>
<li>explore the “Pockets” section of the PIE</li>
<li>for a given pocket on a displayed protein, display list of all similar
pockets from the iPPI-DB database</li>
<li>display PSI metric (Pocket Similarity Index) for all the pockets with
respect to the given pocket</li>
<li>display list of physio-chemical descriptors for all the “similar”
pockets</li>
</ul>
</p>
</div>
</div>
</div>
......@@ -149,7 +196,19 @@
allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen></iframe>
<div class="card-body">
<p class="card-text">How to use the TMAP on the Protein Interaction Explorer.
<p class="card-text">
This tutorial shows how to:
<ul>
<li>access and use the TMAP
(pocketome) feature of PIE (Protein Interaction Explorer)</li>
<li>Use the “Chart Help” feature to learn how to navigate the TMAP</li>
<li>meaning of different criteria or legends which can be viewed on TMAP
</li>
<li>color code TMAP with different criteria</li>
<li>search and query information for a complex via TMAP window</li>
<li>format the names of HD (heterodimer) and PL (protein-ligand) pockets
</li>
</ul>
</p>
</div>
</div>
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment