Skip to content
Snippets Groups Projects
Commit 4abf40d2 authored by Hanna  JULIENNE's avatar Hanna JULIENNE
Browse files

cleaned folder

parents 78aca9e8 835782b8
No related branches found
No related tags found
No related merge requests found
Showing
with 0 additions and 176 deletions
chr start stop
chr1 1 2
chr1 3 4
chr2 1 2
chr2 3 5
chr3 1 2
chr3 3 3
chr3 4 4
Outcome FullName Consortium Type Reference ReferenceLink dataLink internalDataLink Nsample Ncase Ncontrol
RATATOUY Ratatouille ou la mort de l'hygiène en cuisine DISNEY BrainWashing Courgette et al., 1754 http://www.marmiton.org/recettes/recette_ratatouille_23223.asp pouet pouet 1000000
POCAHONT Pocahontas mange des tapas DISNEY BrainWashing Rolfe et al., 1614 https://fr.wikipedia.org/wiki/Pocahontas Gargar Gargar 1000000
File deleted
rsid position refAllele altAllele Z
rs1 1 C T -1.06
rs2 2 G T 0.937
rs3 3 C T 0.854
rsid position refAllele altAllele Z
rs4 1 G T 1.461
rs5 2 A T -1.413
rs6 3 A C 0.567
rs7 4 A G 0.583
rs8 5 C G -1.307
rsid position refAllele altAllele Z
rs9 1 C T -0.54
rs10 2 G T 1.948
rs11 3 A C 0.054
rs12 4 A C 0.352
rsid position refAllele altAllele Z
rs1 1 C T 0.812
rs2 2 G T 2.197
rs3 3 C T 2.049
rsid position refAllele altAllele Z
rs4 1 G T 1.632
rs5 2 A T 0.254
rs6 3 A C 0.491
rs7 4 A G -0.324
rs8 5 C G -1.662
rsid position refAllele altAllele Z
rs9 1 C T 1.768
rs10 2 G T 0.026
rs11 3 A C 1.129
rs12 4 A C -2.38
ID z_BMW_ISETTA z_BMW_MINI z_FIAT_CINQCENT z_FIAT_CINQUECENTO z_MERCO_SMART z_TATA_TATANANO
z_BMW_ISETTA 2 1 1 1 1 1
z_BMW_MINI 1 2 1 1 1 1
z_FIAT_CINQCENT 1 1 2 1 1 1
z_FIAT_CINQUECENTO 1 1 1 2 1 1
z_MERCO_SMART 1 1 1 1 2 1
z_TATA_TATANANO 1 1 1 1 1 2
File deleted
## There 6 phenotypes
sumtab <- read.table("summary.txt", sep="\t", header=TRUE, stringsAsFactors = FALSE)
## Zscore ID: z_CONSORITUM_PHENOTYPE_chr#chr.txt
ids <- sprintf("z_%s_%s",sumtab$Consortium, sumtab$Outcome)
## The covariance is set to 1 and the variance to 2
COV <- toeplitz(c(2,1,1,1,1,1))
rownames(COV) <- colnames(COV) <- ids
## Structure:
# - 5 chromosomes, 2 regions per chromosomes
# - 10 regions, 2 regions per chromosome
# - 30 SNPs, 3 SNPs per region
## Structure of missing values region per region ;
## ".." means no missing values
## "XX" means the whole region is missing
#
# Z1 Z2 Z3 Z4 Z5 Z6
# R1 .. .. .. .. .. ..
# R2 .. .. .. .. .. ..
# R3 XX .. .. .. .. ..
# R4 .. XX .. .. .. ..
# R5 .. .. XX .. .. ..
# R6 .. .. .. XX .. ..
# R7 .. .. .. .. XX ..
# R8 .. .. .. .. .. XX
# R9 XX XX XX .. .. ..
# R10 .. .. .. XX XX XX
filenames <- paste0(rep(ids,e=5), "_chr", rep(1:5, 6), ".txt")
## rsid : rs_#chr_#region_#snp
rsid <- paste0("rs", "_chr", rep(1:5, e=6), # chr
"_reg", sprintf("%02i", rep(1:10, e=3)), # region
"_", sprintf("%02i", 1:30)) # snp
pos <- rep(1:6, 5)
chr <- rep(1:5, e=6)
reg <- rep(1:10, e=3)
ref <- "A"
alt <- "G"
BIGZ <- matrix(1:(30*6), 30, 6)
BIGZ[grep("reg03", rsid),1] <- NA
BIGZ[grep("reg04", rsid),2] <- NA
BIGZ[grep("reg05", rsid),3] <- NA
BIGZ[grep("reg06", rsid),4] <- NA
BIGZ[grep("reg07", rsid),5] <- NA
BIGZ[grep("reg08", rsid),6] <- NA
BIGZ[grep("reg09", rsid),1:3] <- NA
BIGZ[grep("reg10", rsid),4:6] <- NA
rownames(BIGZ) <- rsid
# What does it look like ?
require(pheatmap)
png("zscores.png", res = 100)
pheatmap(BIGZ, cluster_rows = FALSE, cluster_cols = FALSE, cellwidth = 10, cellheight = 10)
dev.off()
# Create regions
# Create Z scores
# Write covariance matrix
write.table(data.frame(ID=ids, COV), file="COV.csv", row.names = F, quote=F, sep="\t")
# Write region file
regions <- data.frame(chr=sprintf("chr%i", rep(1:5,e=2)),
start=rep(c(1,4),5),
stop=rep(c(3,6),5))
write.table(regions, file="regions.txt", row.names = F, quote=F, sep="\t")
# Write all the Z files
k <- 1
for (j in 1:6) {
for (chrnum in 1:5) {
ind <- grep(sprintf("chr%i", chrnum), rsid)
tmp <- data.frame(rsid = rsid[ind],
pos = pos[ind],
ref=ref,
alt=alt,
Zscore=unname(BIGZ[ind, j]))
write.table(na.omit(tmp), file = filenames[k], quote=FALSE)
k <- k+1
}
}
# Compute the summary statistic
File deleted
information content
title Mock dataset with car
description "lorem ipsum"
ancestry CAR
assembly car1
chr start stop
chr1 1 3
chr1 4 6
chr2 1 3
chr2 4 6
chr3 1 3
chr3 4 6
chr4 1 3
chr4 4 6
chr5 1 3
chr5 4 6
Outcome FullName Consortium Type Reference ReferenceLink dataLink internalDataLink Nsample Ncase Ncontrol
ISETTA Wer an seine Frau denkt, fahrt Isetta. BMW Pascher Ghirlanda, S., Jansson, L., & Enquist, M. (2002). Chickens prefer beautiful humans. Human Nature, 13(3), 383_389. https://fr.wikipedia.org/wiki/Isetta /data_test2/isetta /data_test2/isetta 1000000
MINI Matte hi BMW Cher Fardin, M. A. (2014). On the rheology of cats. Rheology Bulletin, 83(2). https://fr.wikipedia.org/wiki/Mini_(1959-2000) /data_test2/mini /data_test2/mini 1000000
CINQCENT TE baby come on, uh-huh Trackmasters uh-huh FIAT Pascher Liu, J., Li, J., Feng, L., Li, L., Tian, J., & Lee, K. (2014). Seeing Jesus in toast: Neural and behavioral correlates of face pareidolia. Cortex, 53, 60_77. https://www.fiat500nelmondo.it/fr/tag/cinquecento/ /data_test2/cinqcent /data_test2/cinqcent 1000000
CINQUECENTO Elle a tout d une grande FIAT Cher Royet, J.-P., Meunier, D., Torquet, N., Mouly, A.-M., & Jiang, T. (2016). The Neural Bases of Disgust for Cheese: An fMRI Study. Frontiers in Human Neuroscience, 10, 511. https://doi.org/10.3389/fnhum.2016.00511 https://fr.wikipedia.org/wiki/Cinquecento /data_test2/cinquecento /data_test2/cinquecento 1000000
SMART Pas assez cher mon fils MERCO Cher Barss, P. (1984). Injuries due to falling coconuts. The Journal of Trauma, 24(11), 990_1. https://fr.wikipedia.org/wiki/Smart /data_test2/smart /data_test2/smart 1000000
TATANANO Qu est-ce que t as sous ton grand chapeau? TATA Pascher Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: how difficulties in recognizing ones own incompetence lead to inflated self-assessments. Journal of Personality and Social Psychology, 77(6), 1121_34. https://fr.wikipedia.org/wiki/Tata_Nano /data_test2/tatanano /data_test2/tatanano 1000000
File deleted
rsid position refAllele altAllele Z
rs_chr1_reg01_01 1 A G 1.001
rs_chr1_reg01_02 2 A G 2.001
rs_chr1_reg01_03 3 A G 3.001
rs_chr1_reg02_04 4 A G 4.001
rs_chr1_reg02_05 5 A G 5.001
rs_chr1_reg02_06 6 A G 6.001
rsid position refAllele altAllele Z
rs_chr2_reg04_10 4 A G 10.001
rs_chr2_reg04_11 5 A G 11.001
rs_chr2_reg04_12 6 A G 12.001
rsid position refAllele altAllele Z
rs_chr3_reg05_13 1 A G 13.001
rs_chr3_reg05_14 2 A G 14.001
rs_chr3_reg05_15 3 A G 15.001
rs_chr3_reg06_16 4 A G 16.001
rs_chr3_reg06_17 5 A G 17.001
rs_chr3_reg06_18 6 A G 18.001
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment