Skip to content
Snippets Groups Projects
Commit 630c83c0 authored by Jean  CURY's avatar Jean CURY
Browse files

Update 2.defense-islands.md

parent 9e8fcec1
No related branches found
No related tags found
1 merge request!162Update 2.defense-islands.md
Pipeline #118887 passed
This commit is part of merge request !162. Comments created here will be created in the context of that merge request.
...@@ -9,6 +9,7 @@ contributors: ...@@ -9,6 +9,7 @@ contributors:
- Ernest Mordret - Ernest Mordret
--- ---
# Defense Islands
**Defense islands** are regions of prokaryotic genomes enriched in defense systems. Their existence first described in Makarova *et al.*:ref{doi=10.1128/JB.05535-11}, who observed that genes encoding defense systems (mainly Restriction Modification enzymes, Toxin-Antitoxin systems, but notably not CRISPR) tended to cluster preferentially on specific portions of bacterial genomes. They postulated that unknown genes commonly found associated to these regions would likely have a defensive role themselves, and confirmed bioinformatically that many of them were indeed diverged versions of classical defense systems. Other systems of genes commonly found in defense islands were later isolated and heterologously expressed to experimentally confirm to have a defensive role (BREX, DISARM). Doron *et al.*:ref{10.1126/science.aar4120}, later followed by Millmann *et al.*:ref{https://doi.org/10.1016/j.chom.2022.09.017}, used the colocalization of genes in defense islands to generate many candidate systems and test them experimentally in high throughput screens, leading to the discovery of a large number of new defense systems. **Defense islands** are regions of prokaryotic genomes enriched in defense systems. Their existence first described in Makarova *et al.*:ref{doi=10.1128/JB.05535-11}, who observed that genes encoding defense systems (mainly Restriction Modification enzymes, Toxin-Antitoxin systems, but notably not CRISPR) tended to cluster preferentially on specific portions of bacterial genomes. They postulated that unknown genes commonly found associated to these regions would likely have a defensive role themselves, and confirmed bioinformatically that many of them were indeed diverged versions of classical defense systems. Other systems of genes commonly found in defense islands were later isolated and heterologously expressed to experimentally confirm to have a defensive role (BREX, DISARM). Doron *et al.*:ref{10.1126/science.aar4120}, later followed by Millmann *et al.*:ref{https://doi.org/10.1016/j.chom.2022.09.017}, used the colocalization of genes in defense islands to generate many candidate systems and test them experimentally in high throughput screens, leading to the discovery of a large number of new defense systems.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment